视觉同步定位与地图构建(Visual SLAM)架构详解

视觉同步定位与地图构建(Visual SLAM)架构详解

视觉同步定位与地图构建(Visual Simultaneous Localization and Mapping,简称视觉SLAM)是机器人自主导航、增强现实等领域中的关键技术。视觉SLAM通过利用摄像头获取的视觉信息,同时完成自身定位与环境地图的构建。其架构通常包括前端处理、后端优化及闭环检测等主要模块。以下将对视觉SLAM的架构进行详细阐述。

一、整体架构概述

视觉SLAM系统主要由以下几个核心模块组成:

  1. 前端(Front-End)

    • 图像获取与预处理:通过摄像头获取连续的视频帧,对图像进行畸变校正、灰度化等预处理操作。
    • 特征提取与匹配:从图像中提取关键特征点(如角点、边缘等),并在连续帧或多视角间进行特征匹配,以获取相对运动信息。
    • 运动估计(姿态估计):利用匹配的特征点对,估计摄像头的相对位姿变化,常用方法包括PnP(Perspective-n-Point)算法、EPnP等。
  2. 后端(Back-End)

    • 地图构建:根据前端提供的位姿信息与特征点,构建环境的三维地图,常用的数据结构包括稀疏地图和稠密地图。
    • 图优化:将位姿和地图点作为图的节点,通过优化算法(如非线性最小二乘)最小化重投影误差,提高整体系统的精度和一致性。
    • 关键帧选择与管理:为了提高计算效率和地图质量,后端会选择关键帧进行优化,管理地图点的添加、删除与维护。
  3. 闭环检测(Loop Closure)

    • 场景识别:通过图像描述子(如Bag of Words、深度学习特征等)识别当前帧是否与之前的某一帧对应同一场景。
    • 全局优化:一旦检测到闭环,通过全局图优化(如位姿图优化)修正累计的定位误差,提升系统的鲁棒性和精度。
  4. 其他模块

    • 数据同步与管理:处理多传感器数据的同步问题,确保前后端的数据一致性。
    • 回环修正与重定位:在闭环检测后,对系统进行位姿修正,并在失去定位时进行重新定位。
二、前端详细解析

前端是视觉SLAM系统的感知层,负责从原始图像中提取有用的信息,具体包括:

  1. 特征提取

    • 基于特征的方法:如SIFT、SURF、ORB等,用于提取图像中的关键点和描述子。
    • 基于直接方法:直接利用图像的灰度信息进行光度一致性匹配,不依赖显式特征点。
  2. 特征匹配

    • 双向匹配:通过匹配前后两帧的特征点,计算运动估计。
    • 光流法:如Lucas-Kanade方法,追踪特征点的运动。
  3. 运动估计

    • 单目SLAM:通过单个摄像头的位姿变化估计,存在尺度不确定性。
    • 双目SLAM:利用双目摄像头提供的深度信息,解决尺度问题。
    • RGB-D SLAM:结合RGB图像和深度信息,实现更精确的位姿估计与地图构建。
三、后端详细解析

后端负责系统的优化与地图维护,具体包括:

  1. 图优化

    • BA(Bundle Adjustment):全局优化算法,调整所有关键帧和地图点的位置以最小化重投影误差。
    • 滑动窗口优化:仅优化最近的若干关键帧,提高计算效率。
  2. 地图管理

    • 关键帧选择:根据运动变化或视角差异选择关键帧,避免冗余。
    • 地图点管理:添加、移除或合并地图点,维护地图的稀疏性或稠密性。
四、闭环检测与全局一致性

闭环检测是视觉SLAM系统中提升长期运行稳定性和精度的重要环节:

  1. 闭环检测方法

    • 基于Bag of Words:将图像描述为词袋模型,通过词频匹配识别重复场景。
    • 基于深度学习:利用卷积神经网络提取全局特征,提高检测的鲁棒性。
  2. 全局优化

    • 位姿图优化:将闭环约束加入位姿图,通过优化算法调整所有相关位姿,消除累计误差。
    • 重定位策略:在闭环检测后,重新定位系统位姿,确保地图的一致性。
五、系统实现与优化

为了实现高效稳定的视觉SLAM系统,还需考虑以下方面:

  1. 实时性

    • 并行计算:利用多线程或GPU加速,提高系统处理速度。
    • 高效算法:选择计算复杂度低且精度高的算法,平衡性能与效率。
  2. 鲁棒性

    • 动态环境适应:处理环境中的动态物体,避免误匹配。
    • 光照变化处理:通过特征描述子的鲁棒设计,适应不同光照条件。
  3. 扩展性

    • 多传感器融合:结合IMU、激光雷达等传感器,提高系统的抗干扰能力和精度。
    • 模块化设计:便于系统功能的扩展与升级。
六、典型视觉SLAM系统案例
  1. ORB-SLAM系列

    • ORB-SLAM:基于ORB特征的单目、双目和RGB-D SLAM系统,具有实时性和高精度。
    • ORB-SLAM2:扩展支持多种相机配置,提升系统的适用性。
    • ORB-SLAM3:融合IMU,实现视觉-惯性SLAM,提高系统的鲁棒性和精度。
  2. LSD-SLAM

    • LSD-SLAM:基于直接法的稠密SLAM系统,适用于单目摄像头,能够构建稠密的环境地图。
七、总结

视觉SLAM作为一个复杂的系统,融合了计算机视觉、机器人学、优化理论等多个领域的技术。其架构的设计需兼顾实时性、鲁棒性与精度,通过前端的高效特征提取与匹配、后端的精确优化与地图管理,以及闭环检测的全局一致性维护,实现对未知环境的精准定位与地图构建。随着计算能力的提升与算法的不断优化,视觉SLAM将在更多应用场景中展现其重要价值。

http://www.iri.upc.edu/people/jsola/JoanSola/eng/toolbox.html EKF-SLAM TOOLBOX FOR MATLAB NEWS Upgrade 2012/04/22: Added support for Omni-directional cameras for ahmPnt and eucPnt points. From 2011/09/03 to 2011/09/08: a bug in the package released between these 5 days caused the toolbox to completely fail. Download the current version below. 2010/09/04: BUG FIX: Corrected bug in code for IDP. If you just want the bug fix, click here. Toolbox versions after 2011/09/08 are already fixed. INTRODUCTION This toolbox performs 6DOF SLAM using the classical EKF implementation. It is conceived as an "active-search" SLAM. It is provided for free under the GPL license (please read the file COPYING and make sure you agree in the terms and conditions before using it). Users employing the toolbox for scientific research should cite in their scientific communications one of the papers of the authors (especially SOLA-ETAL-IJCV-11, SOLA-ETAL-TRO-08) appearing in the References section of the documentation, and also acknowledging the use of this toolbox. • Download the 6DOF SLAM toolbox for Matlab. • Please email me with feedback, I will appreciate. • Read the pdf doc to have an idea. • Features: o Full 6DOF. o Points and lines, with many different parametrizations. Consult the IJCV'11 paper on landmark parametrization. o 3D graphics. o Works with any number of robots and sensors. o Monocular and stereo systems are treated alike. o Supports extrinsic self-calibration of multi-camera rigs as in our TRO'08 paper. • The toolbox supports undelayed initialization of the following landmark types: o ahmPnt : Anchored homogeneous points. See video. This parametrization performs equivalently to Inverse-depth points in filter consistency. o idpPnt : Inverse-Depth points, with conversion to Euclidean points (eucPnt) after confirming linearity. This follows Civera's TRO-08 paper on Inverse-depth parametrization. Seevideo. Also called Anchored Modified-polar points (AMPP) in SOLA-IJCV'11. o hmgPnt : Homogeneous points. See video. o fhmPnt : Framed Homogeneous points. We follow a work by Simone Ceriani et. al., 2011. o plkLin : Plucker lines as explained in our IROS-09 paper. See video. o aplLin : Anchored Plucker lines. See video. o idpLin : Inverse-depth points lines. See video. Also called Anchored Modified-polar points lines (AMPPL) in SOLA-IJCV'11. o hmgLin : Homogeneous-points lines. See video. o ahmLin : Anchored homogeneous-points lines. See video. o See this video that compares idpPnt against ahmPnt and hmgPnt points, showing the superior consistency of idpPnt and ahmPnt because of over-estimation of the covariance in hmgPnt.(note: in the video, hmgPnt is labeled HP, ahmPnt is AHP, and idpPnt is AMPP.) o See this video with all line parametrizations running in parallel. BUG FIXES BUG (fixed in toolbox releases after 2011/09/08): The Jacobians of the idpPnt initialization function were incorrect. This derived in a poor performance of idpPnt points. Now, idpPnt andahmPnt show equivalent performance. FIX: follow these simple steps: 1. Download this file. Unzip it. 2. Copy files idp2ahp.m and ahp2idp.m to toolbox folder %SLAMTB/Points/ 3. Copy file retroProjIdpPntFromPinHoleOnRob.m to toolbox folder %SLAMTB/Observations/ 4. Delete the obsolete bugged file %SLAMTB/Points/idpS2idpW.m from the toolbox.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YRr YRr

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值