LiDAR 基础知识详解 —— 光学探测与测距遥感技术
LiDAR(光学探测与测距)是一种主动遥感系统,广泛应用于大范围区域内植被高度的测量。本文将详细介绍LiDAR的基本概念,包括:
- LiDAR数据的定义
- LiDAR数据的关键属性
- LiDAR数据在树木测量中的应用
- LiDAR的发展历程
关键概念
为什么选择LiDAR
科学家常常需要在生态系统或区域尺度上表征大面积的植被,以回答相关的研究问题。由于资源有限,无法逐一测量每一棵树或灌木,因此需要能够在大范围内快速估算关键特征的工具。传统的地面测量方法资源消耗大,限制了可表征的植被数量。相比之下,遥感技术利用传感器捕捉景观信息,快速记录用于估算条件和特征的数据,是测量大面积植被的理想选择。
LiDAR的定义与优势
LiDAR,全称光学探测与测距(Light Detection And Ranging),有时也称为主动激光扫描,是一种遥感方法,能够绘制包括植被高度、密度及其他特征在内的结构。LiDAR直接测量地面植被的高度和密度,使其成为研究大范围植被的科学家们的理想工具。
LiDAR的工作原理
LiDAR系统的组成
LiDAR是一种主动遥感系统,意味着系统自身会发出能量——在此情况下为光。LiDAR系统中,激光器会快速发射光脉冲,这些光脉冲向地面传播并反射回传感器。LiDAR系统通过测量发射光脉冲往返地面的时间(双程时间),计算出光脉冲的传播距离,并转换为地面高程。这些测量依赖于系统的关键组件,包括定位激光能量的GPS(全球定位系统)和提供飞机姿态信息(滚转、俯仰、偏航)的惯性测量单元(IMU)。
光能测量树木
光能由光子组成。当光子向地面移动时,遇到物体如树枝时会反射部分能量返回传感器。若物体较小,且周围有缝隙允许光通过,部分光子将继续向下传播。因此,单个光脉冲可能会产生多次反射(“返回”)。LiDAR传感器记录这些返回的光能分布,形成所谓的波形。波形中的峰值通常代表地面上的物体,如树枝、叶片群或建筑物。
科学家如何使用LiDAR数据
LiDAR数据有多种应用:
- 高分辨率高程数据模型:LiDAR传统上用于生成高分辨率的高程数据集。
- 植被结构信息:包括冠层高度、冠层覆盖率、叶面积指数、垂直森林结构及物种识别(在点密度较高的稀疏森林中)。
离散与全波形LiDAR
LiDAR传感器接收的光能分布可以通过两种方式记录:
- 离散返回LiDAR系统:记录波形曲线峰值的离散点,每个峰值对应一个返回点。一个激光脉冲可能记录1至11个以上的返回点。
- 全波形LiDAR系统:记录返回光能的完整分布,数据处理较为复杂,但能捕捉更多信息,如冠层下层的结构建模。
LiDAR文件格式
大多数LiDAR数据以离散点形式存储,称为LiDAR点云。常用的文件格式是“.las”,由美国摄影测量与遥感学会(ASPRS)支持。最近,Martin Isenberg开发了高度压缩的“.laz”格式。LiDAR点云数据衍生的产品通常为GeoTIFF(.tif)格式的栅格文件。
LiDAR数据属性:X、Y、Z、强度与分类
LiDAR数据的属性因采集和处理方式不同而异,可通过元数据查看每个点的属性。所有LiDAR点都具有X、Y(位置)和Z(高程)值。大多数LiDAR点还包含强度值,表示传感器记录的光能量。
部分LiDAR数据会进行“分类”,即指定每个点反射的对象类型,如“植被”或“地面”。分类后的数据可以进一步区分建筑物、基础设施或不同类型的植被。
在线查看3D LiDAR数据
可以使用Plas.io在线查看器(由Las Tools的Martin Isenberg及其同事开发)免费探索LiDAR点云数据。详细教程可参考Plas.io的相关资源。
总结
- LiDAR系统通过激光、GPS和IMU估算地面物体的高度。
- 离散LiDAR数据由波形的峰值生成,每个点代表返回能量的峰值。
- 离散LiDAR点包含X、Y、Z值,其中Z值用于生成高度信息。
- LiDAR数据可通过多种方法估算树高和冠层覆盖率。
LiDAR作为一种高效的遥感工具,已成为科学家们在大范围区域内研究植被结构和高程变化的重要手段。