【负荷预测】基于CEEMDAN-CNN-LSTM的负荷预测研究(Python代码实现)

                                         💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于CEEMDAN-CNN-LSTM的负荷预测研究文档

1. 引言

2. 技术背景

2.1 CEEMDAN

2.2 CNN

2.3 LSTM

3. 模型构建

3.1 数据预处理

3.2 信号分解

3.3 特征提取

3.4 时序建模

3.5 模型训练与评估

4. 实验结果与分析

4.1 预测性能评估

4.2 结果展示

4.3 对比分析

5. 讨论

5.1 技术组合效果

5.2 参数设置影响

6. 结论与展望

6.1 结论

6.2 展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CEEMDAN-CNN-LSTM的负荷预测研究文档

1. 引言

负荷预测是智能电网和能源管理中的重要环节,其准确性直接影响到电力系统的稳定运行、电力调度以及经济效益。随着智能电网的发展,对负荷预测的精度要求越来越高。本文旨在探索基于CEEMDAN(自适应噪声完备集合经验模态分解)、CNN(卷积神经网络)和LSTM(长短期记忆网络)的负荷预测模型,通过综合利用这三种技术的优势,提高负荷预测的精度和稳定性。

2. 技术背景

2.1 CEEMDAN

CEEMDAN是一种用于时间序列分析的信号分解方法,它通过引入自适应噪声来克服传统EMD(经验模态分解)方法中的模态混叠问题。在负荷预测中,CEEMDAN可以将负荷序列分解为多个本征模态函数(IMF),这些IMF代表了不同频率成分的信号,有助于降低数据的复杂性和波动性。

2.2 CNN

CNN是一种具有卷积层和池化层的神经网络结构,擅长处理图像和时间序列数据中的局部特征。在负荷预测中,CNN可以对分解后的信号进行特征提取,提取出对负荷预测有用的空间特征。

2.3 LSTM

LSTM是RNN(循环神经网络)的一种变体,能够同时处理输入序列的正向和反向信息,从而捕捉序列中的长期依赖关系。在负荷预测中,LSTM可以利用负荷序列的历史数据,捕捉负荷随时间变化的趋势和规律,提高预测的准确性。

3. 模型构建

3.1 数据预处理

收集负荷数据及相关影响因素(如气象、日期类型等)数据。对数据进行清洗、特征提取和归一化等预处理操作,以消除噪声和量纲不一致的问题。

3.2 信号分解

使用CEEMDAN算法对负荷序列进行初次分解,得到多个IMF分量。这些分量代表了不同频率成分的信号,有助于后续的特征提取和建模。

3.3 特征提取

使用CNN对分解后的信号进行特征提取。CNN的卷积层和池化层能够捕捉信号中的局部特征,提取出对负荷预测有用的信息。

3.4 时序建模

将CNN提取的特征作为LSTM的输入,构建LSTM时序模型。LSTM能够利用历史数据捕捉负荷随时间变化的趋势和规律,提高预测的准确性。

3.5 模型训练与评估

使用训练集数据训练LSTM模型,通过调整模型参数以优化模型性能。采用交叉验证等方法评估模型的预测性能,并进行必要的参数调优。

4. 实验结果与分析

4.1 预测性能评估

使用测试集数据对训练好的模型进行预测,并采用均方根误差(RMSE)、平均绝对误差(MAE)等指标评估模型的预测性能。

4.2 结果展示

展示基于CEEMDAN-CNN-LSTM模型的负荷预测结果,包括预测值与实际值的对比图、误差分布等。

4.3 对比分析

与其他常用预测模型(如LSTM、ARIMA等)进行对比分析,展示本文模型的优越性。

5. 讨论

5.1 技术组合效果

分析CEEMDAN、CNN和LSTM在负荷预测中的具体作用及其组合效果。CEEMDAN的信号分解能力降低了数据的复杂性和波动性,CNN的特征提取能力提取了有用的空间特征,LSTM的时序建模能力捕捉了负荷随时间变化的趋势和规律。

5.2 参数设置影响

讨论不同参数设置对模型性能的影响,并提出改进建议。通过调整模型参数,可以进一步优化模型的预测性能。

6. 结论与展望

6.1 结论

总结基于CEEMDAN-CNN-LSTM的负荷预测模型的主要研究成果和优势。强调该模型在提高负荷预测精度和稳定性方面的有效性。

6.2 展望

提出未来研究的方向和可能的改进点,如探索更高效的算法优化方法、收集更多样化的数据源以提高模型的泛化能力等。

📚2 运行结果

部分代码:

table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典.

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]肖白,高文瑞.基于CEEMDAN-LSTM的空间负荷预测方法[J].电力自动化设备, 2023, 43(3):7.

[2]郭权杰.基于CEEMDAN-LSTM模型的短期负荷预测研究与应用[D].天津理工大学,2023.

[3]冯建强,宋昆仑.基于CEEMDAN-LSTM的桥梁变形时间序列预测研究[J].地理空间信息, 2023, 21(7):40-43.

[4]王清亮,代一凡,王旭东,等.基于ICEEMDAN-LSTM-BNN的短期光伏发电功率概率预测[J].西安科技大学学报, 2023, 43(3):593-602.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 12
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值