目录
💥1 概述
【风光不确定】基于多时间尺度滚动优化算法的主动配电网研究文档
一、研究背景
随着电力系统的发展,主动配电网因其能够通过智能设备和先进的通信技术对电力网络进行监控和调度,以提高电能的利用效率和可靠性,而得到了广泛的关注和研究。在主动配电网中,风光能源(即风能和太阳能)的不确定性是一个重要的挑战。由于天气变化和季节性因素的影响,风光能源的产生具有不稳定性,这对电力网络的优化调度提出了更高要求。
二、研究目标
本研究旨在提出一种基于多时间尺度滚动优化算法的主动配电网调度策略,以应对风光能源的不确定性,实现电力网络的经济优化调度。
三、研究方法
1. 风光能源不确定性描述
- 多场景方法:使用多场景方法描述风电和太阳能功率的不确定性。预测风电功率期望值为μ,其波动的百分比为δ。通过拉丁超立方抽样(LHS)方法生成大量服从概率分布约束的风电和太阳能出力场景,并采用考虑距离的场景削减方法对场景进行削减,最终获取具有代表性的场景及其相应的概率。
2. 多时间尺度滚动优化调度
- 日前调度:基于神经网络预测风光能源的日前出力情况,制定24小时最优调度方案。确定配电网重构的联络线开关状态、火电机组的启停状态、可平移类型需求响应资源的变量值等。
- 日内滚动优化:分为上下两层结构。上层用于平抑调度时长较长的冷热能功率波动,控制时域为1小时,调度时间窗口为2小时;下层用于平抑调度时长较短的电能功率波动,控制时域为5分钟,调度时间窗口为1小时。在t0时刻,系统预测冷热能t0+1至t0+3时段数据,并调整t0+1至t0+2时段内各联供设备计划出力值;同时预测电能t0+N至t0+1+N时段数据,并调度设备平抑t0+N至t0+2N时段的系统电功率波动。
- 实时调度:基于日内预测曲线的正态分布(方差较小),进行实时调度调整,确保系统稳定运行。
四、研究结果
通过多时间尺度滚动优化算法的应用,本研究成功实现了对主动配电网中风光能源不确定性的有效应对,提高了电力网络的经济性和可靠性。具体表现在以下几个方面:
- 优化调度方案:制定了更加精细化的调度方案,实现了对风光能源出力的精准预测和调度。
- 提高能源利用率:通过优化调度策略,提高了风光能源的利用率,减少了弃风弃光现象。
- 增强系统可靠性:在多时间尺度滚动优化调度下,系统能够更快地响应风光能源出力的变化,增强了系统的稳定性和可靠性。
五、结论与展望
本研究提出了一种基于多时间尺度滚动优化算法的主动配电网调度策略,有效应对了风光能源的不确定性挑战。未来,随着技术的不断发展,可以进一步探索更加先进的预测和优化算法,如深度学习和强化学习等技术的应用,以提高主动配电网的经济调度性能和智能化水平。同时,加强与其他智能设备和技术的集成应用,如储能系统、电动汽车等,也将为实现更加高效、可靠的电力供应提供有力支持。
日前基于神经网络预测,
日内基于日前预测曲线的正态分布(方差较大),
实时基于日内曲线的正态分布(方差较小)。
这样一来,基础的源荷数据在各个时间尺度就都有了变化,就不会出现说日前、日内、实时三种调度方案结果一样的尴尬情景了。
其次就是确定在各个时间尺度,确定哪些变量的值。
提一句,每个时间尺度都是所有变量都参与调度,只不过越细分就有越多的变量的值被提前确定了而已。
日前:所有变量都是未知变量、确定涉及到配电网重构的联络线开关的状态、确定火电机组的启停状态、确定日前的A类可平移类型需求响应资源的变量值。调度方案为常规的日前24小时最优调度。
(确定市场议价这里你们可以加)、(确定受电价弹性系数矩阵影响的柔性负荷的值)。
日内:把日前确定的变量值作为常值带入,继续确定火电机组的准确出力、B类可中断负荷的变量值、确定OLTC、CB的挡位。
📚2 运行结果
2.1 日前
2.2 日内滚动
以上仅展现部分结果图。
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]程杉,黄天力,魏荣宗.含冰蓄冷空调的冷热电联供型微网多时间尺度优化调度[J].电力系统自动化,2019,43(05):30-38.
[2]金力,房鑫炎,蔡振华,陈东海,李亦凡.考虑特性分布的储能电站接入的电网多时间尺度源储荷协调调度策略[J].电网技术,2020,44(10):3641-3650.DOI:10.13335/j.1000-3673.pst.2020.0330.