一、研究目标、内容及拟解决的关键问题
本课题的研究目标是研制新一代VTS雷达小目标智能化检测跟踪处理技术,能够在复杂海况环境中准确地检测和跟踪小目标,提高海上交通管理的效能并确保航道安全。
研究内容包括:
1)研究MTCEEMD噪声抑制和Volterra自适应滤波方法,实现复杂海况中的噪声抑制;
2)研究基于深度学习的视频帧间关联小目标检测和跟踪方法,确保其时间连续性并进一步减少噪声干扰;
3)提出基于CNN和Transformer网络增强的小尺度目标检测方法,实现小目标多尺度特征提取和融合;
4)构建雷达监测环境下目标检测数据集与训练策略,提高算法泛化能力和在实际海况中的应用准确性。
为此,本课题需要解决的关键问题有:复杂噪声对微弱信号检测的干扰,目标在雷达视频中的时间连续性差,以及在多尺度特征提取中的效率问题。通过这些关键问题的攻关,可显著提升船舶交通管理系统的全域感知能力,从而提高海上交通的安全与效率。
二、研究总体思路
- 本课题的研究总体思路为:
- 使用MTCEEMD噪声抑制算法和Volterra自适应滤波器开发复杂海况下的噪声抑制方法,优化微弱信号的捕捉效率;
- 开发基于深度学习的视频帧间关联小目标检测与跟踪算法,确保时间连续性和有效处理背景干扰;
- 通过研发多尺度特征提取与模型融合方法,提升对小尺度目标的检测精度并维持实时性;
- 构建并优化全面覆盖各种海况的雷达图像数据集,采用高级数据增强与训练策略,以增强算法的泛化能力和实际应用表现。
三、预期研究成果、验收指标及应用前景
预期研究成果包括1套完整的基于深度学习的VTS雷达智能化目标跟踪处理算法。
验收指标包括研究报告1项、中文核心EI/SCI期刊论文不少于3篇、软著/专利不少于3项。
相关成果预计广泛应用于海上交通安全监控、航道管理及环境保护等领域,提高海上监控的效率和准确性,促进海洋经济可持续发展。
四、研究计划
本课题预计在两年内研制完成。
1.研究的必要性和意义
中国拥有18000公里的大陆海岸线和300万平方公里的管辖海域,水上交通运输业作为国民经济的重要支柱,扮演着至关重要的角色。改革开放以来,特别是加入世界贸易组织(WTO)之后,中国的航运业迅速发展,但也面临着航道拥挤、船员业务水平参差不齐、水上交通管理设施落后等问题。这些问题在海岸和港口地区尤为突出,频繁导致事故,引发人员伤亡、环境污染及财产损失,对经济发展和社会稳定造成了负面影响。因此,采取了多种措施,包括制定管理制度和技术规范,引进国外先进的船舶交通管理系统设备,以提高海事部门的管理效能和确保水上交通安全。
VTS设备的运用是离不开先进雷达技术的,雷达技术的发展使得数字计算技术得以广泛应用。雷达技术主要包括雷达回波信号的检测和处理、雷达视频显示及雷达回波跟踪等。雷达设备的作用类似于人类的耳朵和眼睛,使用无线电波作为信息载体,发射机通过相应的天线将电磁波能量发射到空间的特定方向,当这些波遇到物体时,会被反射回雷达设备,由此进行目标定位和探测,获取目标的详细信息。VTS系统要求雷达不仅能准确定位目标,还能有效跟踪目标。通过对雷达设备接收到的回波信号进行处理、检测、识别和分辨,来发现并确认目标,并通过对目标信息进行分析计算,得到目标的精确位置和运动参数。
因此,研究并开发新一代基于深度学习的VTS雷达智能化目标跟踪处理技术,不仅是提升海上交通安全管理水平的需要,也是应对日益复杂海洋环境挑战的必然选择。通过技术创新,该技术旨在实现对海上船舶的全域感知,确保海上交通安全,促进航海效率,具有重要的研究意义和广阔的应用前景。
2.国内外发展现状及动态
单脉冲雷达首次出现在20世纪50年代,它在单个目标的跟踪研究中扮演了关键角色。到了60年代,数字跟踪系统开始被引入使用。VTS雷达作为一种岸基雷达系统,目前主要使用磁控管雷达和固态雷达。现代雷达系统通常由雷达信号处理器和雷达数据处理器两部分组成。雷达信号处理器的主要功能是目标检测,抑制海杂波和人为噪声的干扰,并将处理过的视频信号与设定的判决门限进行比较。当信号强度超过这一门限时,系统将判定目标已被“发现”,并将目标信号送至信号录取器以提取速度、角度和距离等信息。这些信息随后在数据处理器中进行进一步处理。
在VTS雷达系统中,雷达数据处理器主要负责获取船舶的位置、速度和角度等信息,进行互联、平滑、滤波和预测等计算,估计目标位置和运动参数,并预测下一时刻的位置,从而形成稳定的航迹并实现对船舶的有效跟踪。雷达数据处理器的核心功能是雷达目标跟踪,即对测量数据进行处理并维持对目标当前状态的估计。
图1 小船、海杂波和飞鸟的时变多普勒频移
2.1国外发展现状及动态
2.1.1多传感器数据融合
美国海岸警卫队与MIT联合实验室针对低能见度条件下船只检测困难的问题,研究了通过融合AIS和雷达系统数据的方法。通过这种数据融合,实现了在大雾和暴雨中对船只进行更准确的检测和跟踪,显著提高了船只识别的准确性。荷兰达尔夫特技术大学探索了图像与雷达数据融合用于海上监控的应用,尤其是在恶劣天气条件下。通过结合高分辨率摄像头数据与传统雷达信号,该方法成功地提升了目标跟踪的精度和可靠性,能够有效区分海浪与小型船只。日本国立海洋科学技术中心开发了一种基于红外摄像和雷达数据融合的系统,旨在增强夜间和低光照条件下的船只监控能力。该系统通过分析红外图像中的热签名与雷达信号的结合,能更准确地识别和跟踪在夜间移动的船只。英国帝国理工学院针对现有AIS系统在数据更新率和覆盖范围上的限制,与卫星数据融合进行了实验研究。这一研究通过结合AIS数据和高分辨率的卫星图像,有效地监测了大范围海域中的船只动态,尤其是在远洋航行的长途船舶监控上。澳大利亚国立大学利用无人机搭载的摄像头与传统海上雷达数据进行融合,研究了如何提升繁忙航道中的船只跟踪效率。这种融合技术能够实时提供更多角度的视觉信息,使得对快速移动和小型目标的跟踪更为精确。加拿大温哥华大学开展了一项研究,结合AIS与地面波雷达系统,用于提升沿海区域的船只监测效率。通过这种融合技术,能够在海岸线附近精确监测船只的实时位置和航向,尤其适用于港口和繁忙航道的管理。德国汉堡海洋技术研究所利用气象数据与传感器数据的融合,研究了如何在极端天气条件下改善船只行为预测模型。通过分析气象条件对船只动态的影响,该技术能够预测和警示潜在的危险行为,增强海上交通的安全。
图2 测量实验系统
2.1.2图像处理技术
加州理工学院开发了一种新型图像处理算法,能够通过分析来自高分辨率摄像头的视频数据,自动识别并跟踪海上的小型无人机和小船。这一技术特别适用于在浓雾或高波浪条件下的目标识别。英国海洋研究所利用深度学习模型处理来自船只高清摄像头的图像,有效区分了海面上的垃圾和小型船只,尤其是在光照变化大和视线受限的情况下。挪威科技大学与工业伙伴合作,开发了一套基于图像处理的系统,该系统能够在北海复杂的海况中识别微小的水面变化,用于检测小型浮标和漂浮物。日本东京大学研究团队采用机器视觉技术监测渔业活动,通过分析高分辨率视频,实时检测和分类小型渔船和其捕鱼装备,尤其是在视线不佳的黄昏时分。澳大利亚国立大学的研究人员开发了一种算法,通过分析从船上摄像头收集的图像,自动识别和跟踪海面上的鲨鱼和其他小型海洋生物,用于生态研究和防范潜在的海洋危险。法国海洋研究中心利用卫星图像与船载摄像系统的数据融合技术,提高了在复杂海况下对小型船只和海上设施的监控能力,特别是在法国沿海多雾的区域。美国国家海洋和大气管理局(NOAA) 通过高分辨率摄像技术监控珊瑚礁区域,该技术能够在复杂的光照和水质条件下识别小型船只和潜水活动,用以保护敏感的海洋生态。荷兰代尔夫特理工大学的研究团队开发了一套使用机器学习技术从船载摄像头视频中自动识别和分类海上浮冰的系统,以应对北欧复杂的海况和冰情。加拿大温哥华大学实施了一个课题,通过整合船只和岸基监控摄像系统,创建了一个实时视频监控网,以增强对温哥华港复杂水域中小船和娱乐船只的监控能力。意大利国家海洋学研究所使用高分辨率摄像头和图像分析技术,监控地中海地区的难民船只,这些技术帮助救援团队在复杂的海况中快速准确地定位和救助小型船只。
2.1.3自适应跟踪算法
美国麻省理工学院(MIT)研究团队开发了基于深度学习的自适应跟踪算法,用于改善在高交通区域如波士顿港的船只监控。通过实时分析AIS数据与雷达图像,该算法能够动态调整跟踪参数,从而减少由于船只频繁交错移动引发的跟踪错误,显著提高了跟踪的连续性和准确性。英国牛津大学的研究小组专注于解决在恶劣天气条件下,如大雾和暴风雨中的船舶跟踪问题。他们开发了一个融合多源数据(如卫星图像、AIS和雷达信号)的自适应算法,能自动调整跟踪策略,有效地提高了在低能见度条件下的目标检测和跟踪精度。荷兰代尔夫特技术大学的团队致力于提升在繁忙航道中的小型船只跟踪能力。通过结合机器学习方法和模式识别技术,他们的算法可以自适应调整跟踪阈值,有效识别并跟踪包括快艇和帆船在内的小型目标。澳大利亚国立大学的海洋研究部门开发了一种用于跟踪在珊瑚礁区域活动的船只的自适应算法。该算法利用从水下声纳和表面摄像头收集的数据,自动调整跟踪参数,以应对复杂的海底地形和水流变化的挑战。加拿大不列颠哥伦比亚大学的研究人员面对的是极地船只监测中的问题,尤其是在冰覆盖区的船只定位和跟踪。他们开发的自适应算法可以根据冰情和海况动态调整跟踪模式,提高了在极端环境下的监测效率和准确性。德国汉堡大学的团队解决了在复杂港口环境中的船只自动识别与跟踪问题。通过实时分析视频监控数据,并结合AIS信息,他们的自适应算法可以识别并跟踪港口中的各种船只,特别是在高密度交通和多种干扰信号的情况下。日本东京理工大学通过在狭窄海峡进行的研究,开发了一种新型算法,该算法能够根据海流和船只动态自动调整跟踪参数,有效减少了因船只突然变向导致的跟踪丢失。意大利罗马大学的研究人员致力于提高在游艇和小船频繁的地中海假日区的监控能力。他们的系统可以根据海域的具体条件,如游艇聚集和海上活动多样性,自适应地优化跟踪算法,提升了跟踪的准确度和可靠性。法国国家海洋研究院针对油轮在全球主要航线上的监控,开发了一个自适应跟踪系统,能够根据船只的尺寸、速度和航向自动调整跟踪策略,尤其提升了对大型油轮的长距离跟踪性能。挪威科技大学针对渔业监控的特定需求,开发了一种算法,可以根据渔船的作业模式和区域特性自动调整跟踪设置,有效地跟踪渔船并监控其活动,以防止非法捕鱼行为。
2.2国内发展现状及动态
2.2.1雷达信号处理技术
哈尔滨工程大学面对南海区域频繁出现的强烈海杂波问题,研发了一种基于改进的频域分析技术的雷达信号处理算法。该算法能够有效区分海浪产生的信号与真实目标信号,显著提高了在风暴天气下的目标检测率。中国科学院电子学研究所针对雷达系统在雾霾天气中性能下降的问题,开发了一种结合人工智能技术的信号处理策略。通过模拟复杂气象条件下的雷达回波,该策略成功提升了系统的目标识别和跟踪能力。大连海事大学的研究团队聚焦于在高海况条件下,船只雷达信号经常受到干扰的问题。他们通过引入自适应滤波技术,有效改善了雷达图像的清晰度和准确性,提升了船只的定位与监控性能。中国人民解放军海军工程大学研究了在低飞行目标探测中的雷达信号处理技术。通过开发一种多层神经网络模型来处理从海面反射的复杂信号,显著提高了对低空飞行物体如无人机的检测能力。天津大学针对北方海域冰情复杂对雷达探测性能造成影响的问题,开发了一种基于统计模型的信号处理方法,该方法可以自动区分冰块与船只产生的雷达回波,有效提高了在冬季冰情监测的准确率。上海海洋大学在长江口区域开展了雷达信号处理技术的应用研究,专门解决了在该地区常见的多船只干扰问题。他们设计了一种基于特征识别的算法,能够在众多船只信号中准确识别和追踪特定目标。浙江大学的研究人员针对在浙江沿海频繁出现的小型渔船难以被准确追踪的问题,开发了一种基于模糊逻辑的雷达信号处理策略。该策略通过优化雷达信号的阈值处理,提高了小型目标在复杂海况下的检测准确性。中国海洋大学利用机器学习技术对海洋雷达信号进行深度分析,针对东海区域的高海浪背景下进行目标检测的优化。该技术成功降低了错误报警率,增强了雷达系统的整体稳定性。南京航空航天大学开发了一种新型的雷达波形设计和信号处理技术,特别适用于江苏沿海的复杂电子干扰环境。通过动态调整雷达波形,显著提升了目标检测的灵敏度和准确度。武汉理工大学在长江中下游广泛应用的一种雷达信号处理技术,通过结合地形地貌信息和雷达回波分析,有效解决了河流弯道区域目标检测的困难,提高了该区域船只的安全监管能力。
2.2.2目标识别与分类
大连海事大学为了解决港口区域船只种类繁多、难以分类的问题,该校研究团队设计了一种基于多尺度学习的图像分类算法。通过自动调整学习尺度,该算法成功区分了货船、渔船及快艇等多种类型的船只,提高了分类的准确性和效率。上海交通大学针对夜间和低光照条件下船只识别困难的问题,研发了一种新型的红外和可见光图像融合技术。利用特征金字塔结构,该技术能够在多个光谱层面上进行船只识别,大大提高了夜间的识别率。中国科学院自动化研究所因应海洋环境中目标大小多变的挑战,研制了一种基于改进的卷积神经网络模型,该模型能够适应不同尺寸和形态的目标,实现了高精度的船只检测与分类。南京理工大学的研究小组专注于提升雷达图像中的船只分类性能。他们开发的多尺度特征融合算法不仅增强了图像中船只的特征表达,还通过机器学习技术提高了分类的准确性。天津大学在面对海上目标覆盖范围广泛时,开发了一种基于多尺度特征学习的自适应识别系统。这一系统通过动态调整学习尺度,有效识别了从小型游艇到大型油轮的不同船只。华中科技大学研究团队解决了在多目标环境中船只识别与分类的问题。他们设计的多层特征金字塔结构能够在复杂背景中准确地分离并识别各类船只,提高了系统的稳健性和可靠性。北京航空航天大学针对在快速动态海洋环境中船只分类效果不佳的问题,开发了一种融合深度学习和特征金字塔的新算法。这种方法通过提取不同层次的特征来适应目标在运动中的尺度变化,显著提升了目标跟踪的连续性和准确性。武汉大学的研究团队聚焦于改善在复杂水文条件下的船只识别问题。通过集成高级特征提取技术和多尺度学习框架,他们成功提高了在波涛汹涌的水面上小型船只的检测和分类准确率。浙江大学开展了一项研究,专注于通过机器视觉技术提升搜救行动中小船只的识别能力。研究人员开发的多尺度特征融合算法能够在广阔的海域中快速定位小型船只,极大地助力了海上搜救行动的效率和成功率。
2.2.3深度学习算法
清华大学研究团队针对在复杂海况中小型目标易于丢失的问题,开发了一种基于改进的卷积神经网络(CNN)和时间传播模型的检测算法。通过这种方法,成功提高了在波涛汹涌的海域中对小船只的识别率和跟踪稳定性。北京理工大学面对夜间及低光照条件下小型目标检测困难的挑战,开发了一种结合深度学习和图像分割技术的算法。该算法通过智能调整图像的对比度和亮度,显著提升了小目标的可视性和识别准确性。上海交通大学的研究小组专注于提升港口区域多目标环境下的检测效率。他们采用基于深度学习的多目标跟踪算法,能够同时追踪多个小型船只,并准确区分不同类型的船只。浙江大学研究团队针对海洋浮标和小型无人机的检测问题,采用了基于深度学习的语义分割技术。该技术有效区分了海面上的小型目标与海浪,大大提高了识别的准确率和响应速度。南京航空航天大学开发了一种新型深度学习框架,用于增强雷达和光学传感器数据的融合处理。这一框架通过优化数据处理流程,显著提高了对小型速艇的检测能力,尤其是在复杂背景下。哈尔滨工业大学创新使用时间传播模型结合图像分割技术,针对冰区航道中的小型船只进行了专门的研究。该方法能够准确识别并跟踪冰块中的小船,为冰区航行安全提供支持。东南大学针对近海区域小型船只的自动识别和分类问题,开发了一种基于深度神经网络的算法,该算法特别适用于动态变化的海洋环境,能够实时更新和调整检测参数。西安电子科技大学的研究团队通过集成多尺度学习算法,开发了一种高效的小型目标检测系统,用于监控在复杂背景如渔港的小船活动,提高了监控系统的覆盖范围和准确性。华中科技大学利用深度学习技术开发了一个能够自动从海量视频数据中识别小型目标的系统。这一系统特别适合用于快速识别在繁忙航线上的小船只,以及进行海上交通管理。重庆大学的研究团队专注于利用深度学习改进无人船的自主导航系统。通过深度强化学习算法,无人船能够实时识别并避开海上的小型障碍,如漂浮物和小船,显著提高了其自主导航的安全性和可靠性。
针对以上的国内外研究现状总结,可以看出:
(1)现有的训练数据集通常规模有限且多样性不足,这限制了模型的泛化能力和适应性。特别是在面对极端天气条件或复杂海况时,模型的表现仍有待提高。发展具有更好泛化性的深度学习模型,需要基于更加广泛和多样化的数据集进行训练。
(2)在海上监控中,小型目标如小船只和浮标的检测尤其具有挑战性。现有技术在小目标的检测和跟踪精度上还存在不足。通过集成先进的图像分析和深度学习算法,如特征金字塔网络(FPN)和多尺度检测策略,可以显著提升小目标的检测能力。
然而,在复杂的海洋环境中,尤其是在恶劣天气、高海浪和强海杂波的情况下,传统雷达目标检测技术面临着巨大的挑战:
1)性能限制
现有的船舶交通管理系统在技术架构上主要依赖于传统的雷达信号处理技术,这些技术往往以海杂波特性建模和过门限检测方式为核心,用以提取船舶目标。然而,这种方法在实际复杂海况环境中受到了限制。
- 海杂波分类特性不明确。海杂波,即由海浪反射回来的雷达信号,是影响雷达目标检测准确性的一个关键因素。在复杂海况下,如高海浪、强风等自然条件,海杂波的特性变得异常复杂,其信号强度可能与小型船只或低速移动目标相近,甚至更强。传统的雷达信号处理技术往往通过建立海杂波特性模型和设置检测门限来提取目标,但这种方法在海杂波特性不明确的情况下效果不佳,导致系统难以准确区分船舶目标和海浪,从而影响船舶的正确识别和定位。
- 目标特性的多样性。海上船舶的类型、大小、形态和移动速度等特性具有高度多样性。特别是小型船只和低速移动目标,由于其反射雷达信号的强度较弱,常常在强海杂波背景下被淹没,难以被传统的雷达系统有效探测到。此外,目标的方位角变化、船舶的旋转和倾斜等动态特性也增加了检测的难度。传统技术在处理这些多样化的目标特性时,面临着信号弱、目标特征不明显等问题,导致目标易漏检或误检,进而影响船舶交通管理的效率和准确性。
2)现有应用的不足
传统技术在处理复杂海况下的应用不足,导致了弱小目标容易漏检、航迹不连续等问题。这不仅增加了海上交通的安全隐患,也限制了雷达探测能力的进一步提升。在视线受限和恶劣天气条件下,这些问题尤为突出,影响了船舶的安全航行以及船舶交通管理的有效性。
- 弱小目标容易漏检
在复杂的海洋环境中,特别是在海浪较大、海杂波干扰强烈的情况下,小型船只或低速移动的目标往往因雷达回波信号弱而难以被准确探测到。这种情况在小型渔船、救生艇或其他非商业大型船舶中尤为常见。这些目标的雷达截面积(RCS)相对较小,使得它们的雷达回波信号容易在强海杂波中丢失,从而导致漏检。这不仅增加了海上交通的安全隐患,也使得海上搜救等关键操作变得更加困难。
- 航迹不连续
传统雷达系统在跟踪船舶目标时,可能会遇到航迹断裂或跟踪丢失的情况,特别是在目标船舶进行机动操作(如急转弯、减速等)或在恶劣天气条件下航行时。这主要是因为在这些情况下,目标的动态特性发生了显著变化,而传统的跟踪算法难以实时适应这种变化,导致目标航迹的更新不连贯或完全丢失。航迹不连续不仅影响到船舶交通管理的效率,还可能对海上交通安全造成威胁。
- 视线受限和恶劣天气条件下的挑战
在视线受限(如航道狭窄、周围有岛屿或人造结构物阻挡等)和恶劣天气条件(如雾、大雨或风暴等)下,传统雷达探测与目标识别的难度进一步增加。这些环境因素不仅会降低雷达波的传播效率,还会增加海杂波和其他非目标回波的干扰,进而降低目标检测和跟踪的准确性和可靠性。这种情况下,船舶的安全航行和有效的交通管理受到严重影响,尤其是在繁忙的航道和港口区域。
3)深度学习技术
随着人工智能领域的迅猛发展,深度学习技术已成为推动众多行业技术进步的关键驱动力。特别是在图像识别、模式识别等领域,深度学习展现出了其无与伦比的性能和潜力。对于船舶交通管理系统而言,深度学习技术的应用能够显著提升雷达目标检测与跟踪处理技术的性能,尤其在处理复杂海况下的目标检测问题时表现得尤为突出。
- 深层特征学习能力
深层特征学习的能力是深度学习技术,特别是卷积神经网络(CNN)的核心优势之一。这种能力使得深度学习模型在图像处理和识别任务中特别有效。以雷达目标检测为例,传统的方法依赖于手工设计的特征提取器来识别目标,如船只,在复杂的海面环境中。这些方法通常受限于设计者对问题的理解和手工特征的有效性。相比之下,深度学习模型通过学习大量的雷达图像数据,能自动发现和提取有用的特征,这些特征不仅包括目标的形状、大小等直观特征,还包括更为抽象的特征,这对于在复杂背景中准确识别目标至关重要。例如,深度学习模型可以被训练来自动识别海面上的船只。在训练过程中,模型会从成千上万的含有船只与无船只的海面雷达图像中学习。这些图像中的船只可能大小不一、类型多样,且背景可能包含波浪、海浪泡沫等海杂波。通过深层特征学习,模型能够识别出与船只识别相关的复杂特征,从而在新的图像中有效地识别出船只,即使在海杂波背景下也能保持高识别准确率。
- 提高检测的准确性和鲁棒性
传统雷达目标检测技术通常依赖于预定义的规则或简单的模式识别方法,这些方法在简单的场景下可能表现良好,但在复杂海况或恶劣天气条件下,它们的性能会大大下降,从而导致高误检率和漏检率。深度学习技术,尤其是卷积神经网络(CNN)和循环神经网络(RNN),通过学习大量数据中的复杂模式,能够在各种环境条件下提高目标检测的准确性和鲁棒性。
- 适应性强
通过持续学习新的数据,模型能够适应环境变化和新的检测任务。对于船舶交通管理系统而言,这意味着即使面对未曾遇到的海况或新型船只,深度学习模型也能够快速调整自身,继续提供准确的目标检测和跟踪服务。
- 实现复杂任务
利用深度学习技术,可以实现传统雷达系统难以完成的复杂任务,如同时跟踪多个目标、在极低信噪比条件下检测小型目标、预测目标未来位置等。这些高级功能对于提升海上交通的安全性和效率至关重要,有助于预防碰撞事故,优化航道使用,提高海上交通管理的整体水平。
综上所述,研究并开发新一代基于深度学习的VTS雷达智能化目标跟踪处理技术,不仅是提升海上交通安全管理水平的需要,也是应对日益复杂海洋环境挑战的必然选择。通过技术创新,旨在实现对海上船舶的全域感知,确保海上交通安全,促进航海效率,具有重要的研究意义和广阔的应用前景。
1.研究目标
本课题旨在研制新一代VTS雷达智能化目标跟踪处理技术,能够在复杂海况环境中准确地检测和跟踪小目标。研究基于MTCEEMD噪声抑制算法和Volterra自适应滤波器的复杂海况噪声抑制方法,并通过海杂波的分解、细化、滤波和重构,从预测误差中检测微弱信号;研究基于深度学习的视频帧间关联的小目标检测和跟踪算法,确保在时间连续性上的高效管理同时,进一步抑制背景噪声和海杂波的干扰;研究并实现多尺度特征提取和模型融合方法,通过结合不同层次的网络模型,提升对小尺度目标的检测精度,同时保持处理的实时性,满足雷达系统的操作需求;建立一个覆盖广泛海况变化的专用雷达图像数据集,并制定有效的训练策略,以提高算法的泛化能力和在实际环境中的表现;显著提升船舶交通管理系统的全域感知能力,增强对小目标的监测和预警功能,从而提高海上交通的安全与效率。
2.主要内容
为实现以上研究目标,本课题拟开展如下研究内容:
图3 课题研究内容及技术路线
2.1 复杂海况下海杂波中的噪声抑制方法
针对微弱信号在复杂海况下受到多种噪声如海浪、雷电等动态噪声与雷达自身的测量噪声的影响,本课题拟使用MTCEEMD噪声抑制算法处理有海杂波与微弱信号组成的后散射回波。将海杂波分解为一系列各频段的IMF分量。利用小波包分析法进行频段的细化拆解,划分高频IMF,选取合适阈值进行滤波,结合未处理的低频IMF重构,得到消噪后的海杂波。利用Volterra自适应滤波器建立短期混沌序列海杂波预测模型,从预测误差中检测微弱信号。
2.2 视频帧间关联小目标检测跟踪算法
针对小目标在复杂海况下检测和跟踪问题,本课题拟基于时间传播模型,利用深度学习技术处理雷达视频帧间的时序关联。使用图像分割模型对连续视频帧进行初步分割,形成片段一致性图像。应用时间传播模型,如修改后的XMem,将片段一致性图像在时间上向后传播,增强目标连续性的检测。结合传播后的图像和未来帧的分割结果,通过高级融合策略识别和跟踪新出现的目标。
2.3 多尺度特征提取与模型融合方法
针对小目标检测在分辨率和特征表达上存在的挑战,本课题拟研制适合雷达图像的多尺度特征提取方法。使用CNN和Transformer网络,提高对小尺度目标的检测能力。结合不同深度网络模型如Tridentnet,进行特征的层次化学习和融合,以捕获从粗糙到精细的特征。探索稀疏注意力机制,提升模型的计算效率和实时性。
2.4 目标检测数据集与训练策略优化
为提高算法的泛化能力和实际应用的准确性,本课题拟针对具体的雷达监测环境建立专门的数据集,并开发适合的训练策略。首先,对雷达图像特性进行数据增强,如模拟海杂波的去除和目标在不同海况下的变化。其次,采用迁移学习方法,将现有的视觉目标检测模型如YOLO和DETR调整至雷达图像的特点。然后,实施手动标注和自动化标注相结合的策略,以确保训练数据的质量和模型训练的有效性。
3. 拟解决的关键问题
3.1 复杂噪声导致微弱信号检测困难
海杂波是由海浪、海风以及海面上其他物体反射的雷达波组成的背景噪声,这些反射信号往往强度不一,难以区分。此外,雷达自身的系统噪声,如电子设备的随机电噪声和热噪声,也会干扰信号的清晰度。在复杂的海况中,如在风大浪高或雷电天气情况下,这些噪声因素更加明显,使得原本就微弱的目标信号更难被识别和追踪。
高背景噪声会掩盖或模糊微弱目标的信号,导致雷达系统难以从杂波中分辨出真正的目标信号。这种情况下,即使是高灵敏度的雷达设备也可能出现漏检,无法及时发现并跟踪微弱目标,如小型船只或海上漂浮物。此外,信号处理的复杂度增加,需要更高级的算法和技术来有效分离有用信号和背景噪声,提高雷达的检测能力和准确性。如果处理不当,可能会导致误报增多,影响雷达系统的整体性能和可靠性,进而可能导致无法有效应对潜在的安全风险,增加海上交通事故的风险。
3.2 时间连续性差、环境干扰处理不足
雷达系统在捕捉动态目标时会受到各种因素的影响。雷达图像中的目标通常较小,且因雷达扫描机制和分辨率限制,目标在连续帧中可能出现移动、变形或暂时消失的情况,特别是在海况复杂、目标动态变化快速时更为常见。此外,雷达系统固有的时间延迟和处理速度也可能导致帧与帧之间的信息不完全同步,影响到目标状态的连续追踪。当目标在雷达覆盖区内移动速度较快或者运动轨迹突变时,也会加剧时间连续性的问题。
海杂波是雷达系统在海洋环境监测中常见的一种干扰,它包括由海浪、风速和其他海洋现象引起的非目标回波。这些干扰信号往往与小目标的雷达回波在幅度和频率上相近,使得传统的雷达目标检测算法难以区分真实目标与背景杂波,从而导致目标检测的准确性大幅下降。在动态变化的海洋环境中,如不对这些干扰进行有效处理,将无法保证目标检测和跟踪的连续性和准确性,增加了目标漏检和误检的风险,严重时可能导致安全监控的失败。
3.3 特征表达力低、尺度融合效率差
小目标在雷达图像中的像素数量少,形态特征不明显,常常被周围的噪声和背景杂波所掩盖。雷达图像的分辨率和雷达波的特性决定了其在捕捉细小物体方面的困难,使得从这些小目标中提取有用的特征变得更加挑战。此外,不同尺度的特征提取需要针对目标的不同大小进行调整,单一尺度的特征提取方法难以适应各种尺寸的目标,这导致需要在多个尺度上进行特征提取和分析,以尝试捕获更全面的信息。
雷达图像中的目标大小不一,而且目标的表现形式依赖于观测角度和距离。若特征提取方法不能有效地在多个尺度上提取并融合这些特征,将难以准确识别或跟踪小目标。此外,雷达系统常需在实时或接近实时的条件下运作,特征提取和融合的过程如果效率低下,将不能满足实时性需求,导致在动态监控环境中的应用效果大打折扣。有效的特征融合不仅需要提高识别准确性,还需优化处理速度,以确保算法能迅速反应并适用于实际的雷达监控系统。
3.4 样本多样性差、训练策略适应性不足
雷达数据集往往受限于特定的采集条件和环境,使得训练数据不能全面覆盖各种海况、天气条件和目标类型。雷达图像数据的采集成本较高,且在实际应用中遇到的场景可能远远超出了训练时使用的样本类型。此外,雷达图像的特有性质(如海杂波、多路径干扰等)和目标的多样化表现(大小、速度、形态等)增加了数据集构建的复杂性。因此,如果训练数据集不够丰富或者缺乏代表性,将导致模型在面对未见过的或少见的环境和目标时表现出较差的适应性和准确度。
不恰当的训练策略可能无法充分利用有限的数据资源,或者未能针对实际应用中的具体问题进行优化。例如,如果训练策略没有考虑到实际应用中目标尺寸的多变性、运动的快速变化和复杂的海况背景,那么算法可能会在这些条件下表现不佳。此外,训练过程中缺乏针对异常情况的模拟和测试,如突发天气变化或非典型目标行为,也会限制模型的鲁棒性。因此,为了保证算法在各种情况下的有效性和准确性,必须开发能够适应多样化环境和挑战的训练策略,确保模型具备足够的泛化能力和实际应用价值。
1. 技术路线
1.1复杂海况下海杂波中的噪声抑制方法
根据海杂波的非线性非平稳特性,CEEMD算法受模态混叠影响小,适用于非平稳信号,可以将海杂波自适应地分解为一系列由高频到低频排列的 IMF分量,研究CEEMD分解后频段特性,根据频段特性选取合适阈值进行滤波,处理可能含有微弱信号的高频IMF,设计出能够尽可能去除噪声的同时保留微弱信号的 MTCEEMD 噪声抑制算法,其技术路线图如下:
图4 MTCEEMD噪声抑制算法技术路线图
1)基于MTCEEMD的海杂波噪声抑制方法
a)CEEMD方法通过向海杂波中添加一组正负相对的白噪声信号分别进行 EMD分解,将分解的结果进行组合即得到最终的IMF,在保持较好的分解效果的前提下,可以抑制由白噪声导致的重构误差。利用CEEMD 算法对海杂波进行去噪的算法实现步骤如图3所示,其中n表示为噪声,Cj表示 CEEMD 分解最终得到的第j个IMF分量。
b)高频IMF划分。针对高频 IMF中微弱信号与噪声同时存在的问题,需对高频IMF精细化滤。分别通过自相关函数和能量判定法划分高频与低频 IMF。随机信号的自相关函数表征了信号在不同时间点的相关程度,定义为:
其中,x(t)为随机信号,归一化自相关函数表示为:
式(2)中,t1,t2为为需要度量的两时间点。信号具有强关联性,其自相关函数非零点处值会随着时间差而上下波动。噪声各个时刻具有随机性和弱关联性,其自相关函数在非零点处的值会迅速衰减,趋近于 0。根据两者自相关函数的差别,确定高频 IMF 与低频IMF。自适应的 CEEMD 算法分解的 IMF 分量是由高频到低频排列的,高频 IMF 杂乱无章,低频 IMF 的起伏具有主信号特性,对 CEEMD 分解后的高频 IMF 设计合适的滤波算法,再结合低频 IMF 重构海杂波,尽可能地去除高频部分海杂波的同时保留微弱信号。
图5基于 CEEMD 的海杂波分解流程
通过自相关函数判定高低频 IMF 的方法虽然普适有效,但还是属于主观判定,没有确切的数据支撑。为增强客观性,提出利用 IMF 的能量比例来区分高频 IMF 和低频 IMF 。计算每个海况下不同距离门前 E 个 IMF对完整信号的能量比例。如下式:
式(3)中IMF1 ~ IMFX表示最能划分目标和杂波距离门的IMF集合,S代表分解前的海杂波,分析能量比例是否符合目标分布特性,若符合则认定为信号成分,若不符合则认定为噪声成分。
c)基于MTCEEMD 海杂波噪声抑制实现。由上述b)划分的频段关联性
较强的信号组成低频段,中频段是由噪声和信号共同组成的,高频段主要由噪声构成。对各频段选取合适的阈值进行滤波。其步骤如下:
- 分析IMF信号特点,选取合适的小波基函数。根据IMF信号频率分布广泛,并且在高频部分可能藏有微弱信号的特点,选定具有正交性以及保证高频信息不丢失的高度紧支撑性的 db4 为小波基函数,熵标准定为Shannon。
- 确定分解层数N,进行小波包分解。利用小波包变换对 IMF 信号进行滤波时,若小波包分解层数选取不合理,会造成噪声过滤不干净,或计算量过大等后果。
- 通过小波包分解获得与树节点对应的小波包分解系数cfi(i = 0,1,2,…),区别于直接按照树分解自然顺序进行阈值处理的传统方法,克服每层分解中高通滤波器的“翻转”特性,将IMF信号的小波包分解系数按由低到高的频率顺序进行排列,将正确的频率顺序与树节点号对应起来。
- 计算排序后小波包分解系数的自相关函数,基于噪声与信号的自相关特性确定低频、中频、高频部分。信号在非零点处的自相关函数值会上下波动,噪声在非零处自相关函数值迅速衰减,趋近于 0。
- 依据信号信息获取Minimaxi准则对应的阈值th1,Rigrsure准则对应的阈值th2,Heursure 准则对应的阈值th3。然后,根据海杂波中信号与噪声的分布特性,对小波包分解系数选取合适的阈值,低频段采用阈值th1,中频段采用阈值th2 ,高频段采用阈值th3。
- 区别于只采用一种阈值处理的传统去噪方法,在处理不同频段的小波包系数时对应不同的阈值准则。对信号居多的低频部分采用Minimaxi阈值准则,中频部分采用 Rigrsure 阈值准则,噪声居多的高频部分采用Heursure阈值准则,解决了去噪过度或消噪不明显的问题,提升去噪精度。
- 重构小波包分解系数,得到滤波后的 IMF 信号,实现基于频率顺序的小波包多阈值滤波处理。
- 将滤波后的IMF信号分量与剩余低频IMF分量一起重构原信号,得到去噪后的海杂波。MTCEEMD算法流程图如下:
图6 MTCEEMD 噪声抑制算法流程图
2)基于Volterra滤波器的海杂波中微弱信号检测模型
Volterra模型同时考虑线性和非线性因素的影响,自适应跟踪混沌序列的运动轨迹,准确预测多个混沌序列。利用Volterra滤波器构建混沌预测模型,通过预测误差的精度提升证明所提MTCEEMD去噪算法的效果。
在Volterra级数展开构造的混沌时间序列非线性预测模型中,输入为一系列高维向量:
,输出为
,每个高维向量经过预测网络所得值的集合即预测出的海杂波,非线性系统函数的 Volterra 级数展开如下:
式(5)中,
称为k阶Volterra核,P为Volterra滤波器的阶。在实际应用中,这种无限级数展开很难实现,通常采用有限阶截断和有限阶求和。将二阶截断m求和用于混沌时间序列预测滤波器。离散非线性动态系统的二阶Volterra模型定义如下:
式中,
为n时刻含有微弱信号的输入海杂波,
为Volterra自适应预测模型得到的预测结果,
为常数项。M 为自适应预测模型的记忆长度,
和
分别为一阶核函数和二阶核函数。
基于Voltera自适应滤波器的海杂波混沌预测的实现过程为:
- a)利用MTCEEMD噪声抑制算法对海杂波进行预处理得到纯净的海杂波。
- b)基于CAO算法和互信息法分别确定海杂波的嵌入维数和延迟时间,重构相空间。
- c)将相空间中的高维点划分为训练样本和测试样本
- d)对选定训练样本建立基于Volterra滤波器的预测模型,调整网络参数使预测误差最小。
- e)利用训练模型预测剩余样本
,得到预测值,将预测数据与实际数据进行比较,得到预测误差
。 - f)根据不同海况间海杂波特性的不同,判断预测误差中是否存在微弱信号。用预测误差的均方根误差来衡量去噪效果,均方根误差的计算公式如下:
1.2 视频帧间关联小目标检测跟踪算法
分割连续的雷达视频帧,提取分割图像结果,得到片段一致性图像,把这部分图像放在时间传播模型上向后传播,进行固定帧数的传播以后再次和片段一致性分割结果进行融合,识别出图像上新出现的目标,即可实现对目标的跟踪。具体来说:
1)图像分割
分割连续的视频帧,从第一帧开始,使用图像分割模型对视频进行分割,为了消除单帧分割产生的错误,将未来几帧进行合并,达成片段一致性作为输出的分割图像。可以总体上分为三步:
a)在空间上对齐。由于分段对应着不同的时间步长,可能在时间上有错位,我们需要重新使用时间传播模型进行对齐。
b)所有分段进行对齐后,每个分段都是对象的提议,将这些提议放在一个集合中,对集合中的分段进行共识投票,输出片段一致性的片段。在共识投票中有两个规则:单独的提案(比如下图中的黄色部分)很可能是噪音,不应被选中,入选的提议部分(比如下图中的蓝色部分)应该得到其他未选中提案的支持;选定的提议不应有明显的重叠。
c)整数规划。将b)的两个规则进行一个整数规划问题。
图7 图像分割
图中的方格是连续三帧不同的图像,其中黄色形状的没有得到任何支持,被认定是噪声,其余的形状与蓝色的形状严重重叠而未被采用。蓝色的图像就是片段一致性选择的结果。
2)时间传播
修改现成的最先进的视频对象分割模型XMem作为时间传播模型,使用时间传播模型将图像分割得到的片段一致性图像传播到后续帧。
XMem的内存读取操作从所有三个内存存储中提取相关特征,并使用这些特征生成掩码。为了合并新的记忆,感觉记忆每帧更新一次,而工作记忆只在第r帧更新一次。当工作记忆充分时,工作记忆以一种紧凑的形式合并为长期记忆,长期记忆随着时间的推移会忘记过时的特征。此外,需要注意的是,传播模型本身无法分割场景中出现的新物体,因此本课题使用在时间传播的图像与再此之后的片段一致性的图像相融合。
图8 视频对象分割模型XMem框架
3)融合策略
时间传播的分割图像来自过去,片段一致性的图像来自近期的未来,片段一致性的分割结果进行时序传播,进行固定帧数的传播以后再次和片段一致性分割结果进行融合,得到最终生成的视频分割结果。与片段内共识不同,这两者包含的信息各不相同,所以不删除任何一个片段,而是融合所有的关联部分,同时让不关联的部分输出,不关联的部分即为目标。作为实现细节,我们从内存中删除没有变化的段以减少计算成本。当一个片段连续多次没有与共识中的任何片段关联时,就认为该片段不活动,这些对象可能消失或者被错误检测到。
对于雷达视频目标检测,本课题要检测的目标是在雷达监测一周内非目标部分微弱变化,这些微弱的变化可以在图像分割模型中进行几帧融合时将一些非目标的噪音去除掉,雷达检测一周,被检测目标有一个小范围的移动,将视频图像分割的片段一致性图像放在时间模型上传播,到雷达监测一周时,被检测目标的小范围移动相当于出现的新物体,传播模型无法进行识别,然后与未来的片段一致性分割结果进行融合,检测到目标图像新出现的位置和路径。
具体为,首先将原始图像帧进行图像分割,然后利用片段一致性保留高支持性的目标分割结果,得到分割后的片段一致性图像。然后将修改后的XMem作为我们的时间传播模型,将输出的片段一致性图像进行时序传播,进行固定帧数的传播以后再次和片段一致性分割结果进行融合。直到出现新物体,新物体是无法被时间传播模型识别的,所以我们要将传播的模型与近期的未来的片段一致性图像融合,融合得到新物体图像,即为目标。
1.3 多尺度特征提取与模型融合方法
1)多尺度特征提取网络设计
为了适应雷达图像中小目标检测的需求,采用混合网络结构,结合传统的卷积神经网络(CNN)和Transformer网络。CNN部分专注于捕获局部、低级的视觉特征,如边缘、纹理等,而Transformer部分处理全局上下文信息,帮助识别跨越多个区域的模式和关系。
在实现方面,首先通过几层CNN进行特征提取,然后将这些特征输入到Transformer模型中。Transformer通过自注意力机制,允许模型在整个图像中学习像素间的长距离依赖关系,这对于在复杂背景中识别小目标尤其重要。Transformer的关键公式为自注意力计算:
(8)
其中,Q、K、V分别是查询、键、值矩阵,dk是键的维度。
图9 CNN+ Transformer网络模型架构
2)层次化特征学习
TridentNet是一个专为处理不同尺寸的目标而设计的深度学习架构,它属于多尺度特征提取网络的一种。该模型的核心思想是通过多个并行分支,每个分支专注于不同的尺度,来增强模型对各种尺寸目标的检测能力。在TridentNet中,每个分支都是一个独立的卷积网络,这些网络共享相同的输入图像但是配置不同的卷积核大小和步长。这种设计允许网络在不同的尺度上捕捉和学习特征,因为每个分支的感受野不同,使得模型可以同时关注小范围的细节和大范围的上下文。
每个分支可以配置有不同的卷积核大小,如一分支可能使用较小的卷积核(例如3x3),专注于捕捉细微特征;另一分支可能使用较大的卷积核(例如7x7或更大),用于捕捉较大区域的特征。这种不同的卷积核设置对应不同的感受野大小,有助于模型捕捉到不同尺寸的目标。
步长的设置也根据分支的目标尺度进行调整。小尺度目标的分支可能采用较小的步长,以保持高分辨率的特征映射;而大尺度目标的分支可能采用较大的步长,以增加感受野并减少计算量。
在特征提取后,不同分支的输出需要通过一个融合层来整合。这一层通常使用一种加权融合策略,如加权和或者更复杂的融合网络(可以是另一个CNN或者全连接层),来合并各分支的特征。这种融合确保了网络不仅可以细致地表达小尺寸目标的特征,同时也能有效地整合来自大尺寸目标的信息。
此外,还需要对不同分支的权重进行优化,以平衡不同尺度特征的贡献。此外,超参数如学习率、批大小等也需根据实验反馈进行调整,以确保模型在多尺度目标检测任务中达到最佳性能。
3)稀疏注意力机制
在Transformer模型中引入稀疏注意力机制,目的是减少每个注意力操作所需处理的元素数量。传统的自注意力机制是全连接的,每个元素都与其他所有元素计算相互作用,这在处理大尺寸图像或长序列时非常耗费计算资源。通过设计稀疏模式(例如局部窗口注意力或分层注意力),可以显著减少计算负担,提高处理速度,同时保留关键的上下文信息。这种方法特别适用于雷达图像监测等实时或接近实时的场景。
(9)
其中M是一个掩码矩阵,用于实现稀疏连接。
通过这种混合网络结构和稀疏注意力机制的应用,可有效提升雷达图像中小目标检测的性能,同时保证系统的实时响应能力,适应复杂且动态的监控环境。
1.4 目标检测数据集与训练策略优化
1)数据采集与增强
采用课题中提供的雷达图像数据(涵盖各种海况和天气条件)模拟真实世界的多样性。数据增强是深度学习训练中关键的步骤,特别是在目标检测中,增强技术可以显著提高模型对不同环境变化的鲁棒性。数据增强包括随机噪声注入、图像扭曲、缩放、旋转、翻转和色彩变换等。这些操作不仅增加了数据的多样性,还帮助模型学习在不同的视觉扰动下保持稳定性和准确性。
图像扭曲可以通过仿射变换表示:
(10)
其中,(x, y)是原始图像坐标,(x’, y’)是变换后的坐标,a、b、c、d控制旋转和缩放,tx、ty控制平移。
2)目标注释
结合手动标注和自动化标注技术来确保数据集的标注质量和准确性。手动标注提供高精度的标记,而自动化技术如半自动标注工具可以加速大规模数据集的标注过程。使用专门的标注软件LabelImg,在图像上绘制边界框并标记类别。对于自动化部分,可以应用简单的算法预标注,后由人工进行复审和修正。
3)训练策略
迁移学习是将已在一个任务上训练好的模型参数用作另一个相关任务的初始设置的过程。对于本课题雷达图像检测,可以利用在常规视觉任务上预训练的模型YOLO适配雷达图像的特点。先在大规模视觉数据集(ImageNet)上训练模型,然后将学到的特征迁移到雷达图像数据集上。通常,这涉及微调模型的输出层以适应新的类别,同时保留大部分卷积层不变。
最后,通过在建立的雷达图像数据集上进行系统的实验,调整模型的训练策略。这包括优化学习率、批大小、正则化技术等参数。使用如交叉验证等技术评估模型在不同海况下的性能,记录和分析性能指标(如精确度、召回率、AP等)。根据这些指标,不断迭代调整模型结构和超参数,以找到最佳配置。
2.研究方法及关键技术
2.1复杂海况下海杂波中的噪声抑制方法
针对海杂波的非线性非平稳特性,本课题研究海杂波噪声抑制方法,为微弱信号检测提供良好的基础。CEEMD 算法受模态混叠影响小,适用于非平稳信号,可以将海杂波自适应地分解为一系列由高频到低频排列的IMF分量。根据自相关函数与 IMF 能量比例,划分高中低频IMF。在对高频 IMF 进行小波包分解时,克服小波包分解的频率翻转特性,按频率顺序重排分解系数。根据频段特性选取合适阈值进行滤波,结合未处理的低频IMF 重构得到消噪后的海杂波。基于相空间重构理论,利用 Volterra 自适应滤波器建立短期混沌序列海杂波预测模型。从预测误差中检测微弱信号
2.2视频帧间关联小目标检测跟踪算法
针对在复杂海况下的小目标检测与跟踪,本课题拟采用时间传播模型与深度学习技术相结合的方法。首先,通过先进的图像分割模型如U-Net或Mask R-CNN,对连续雷达视频帧进行初步的分割,以识别和隔离出潜在的目标区域。接着,利用改进的XMem模型进行时间传播,该模型能够考虑历史帧的信息,预测未来帧中目标的可能位置,增强对目标运动连续性的追踪能力。为了更准确地识别和跟踪新出现的目标,拟将采用高级的图像融合技术,结合过去帧和预测的未来帧的信息,以优化目标识别的精度和稳定性。
2.3多尺度特征提取与模型融合方法
在小目标检测中,多尺度特征的提取和融合是至关重要的。本课题拟开发混合网络结构,结合CNN和Transformer技术,充分利用CNN在局部特征提取方面的优势及Transformer在捕获全局上下文信息方面的能力。具体来说,CNN层将负责从图像中提取边缘和纹理等基础视觉特征,而Transformer层将处理这些特征,通过自注意力机制学习不同部分之间的依赖关系。此外,拟采用Tridentnet架构来实现多分支的特征处理,每个分支处理不同尺度的输入,最终通过一个融合层将这些特征整合在一起,以实现对各种尺度目标的有效检测。
2.4目标检测数据集与训练策略优化
为了提高算法的泛化能力和适应性,本课题拟基于课题的雷达图像数据集,对其进行扩充,并覆盖广泛的海况和天气条件。数据集的构建将包括广泛的数据采集和增强技术,如图像扭曲、噪声注入等,以模拟不同的海洋环境。此外,将结合手动和自动化技术进行数据标注,确保数据的高质量和标注的准确性。在训练策略方面,采用迁移学习方法,将在通用视觉任务上预训练的模型如YOLO和DETR适应至雷达图像特征,加速模型的学习过程并提高其在实际环境中的表现。通过在特定数据集上进行反复实验和优化,进一步调整训练策略,以达到最佳的性能表现。
3. 可行性分析
3.1复杂海况下海杂波中的噪声抑制方法
CEEMD算法作为一种自适应分解信号的方法,适用于海洋环境中复杂的信号处理任务。课题采用基于可以自适应分解信号的CEEMD算法与精细化处理高频部分的小波包分解算法,采用MTCEEMD噪声抑制算法,可以在保留微弱信号的同时尽可能滤去杂波。
Volterra滤波器通过建立混沌预测模型,可以在一定程度上准确预测信号的行为,从预测误差中检测出微弱信号。课题采用基于Volterra滤波器的混沌预测模型,从预测误差中检测出微弱信号,能够更加精确地检测出海杂波背景下的微弱信号。选取某组海情下的含有微弱信号的第8距离门海杂波进行实验将高维坐标系统代入Volterra预测模型进行自适应预测,测试集结果如下。可以清楚地看出,大多数采样点的预测值与真实值相近,只在140点左右的预测值和真实值相差较大,可以推断出存在微弱信号。图10(b)的预测误差图也可以发现在 140 采样点产生较大波动,幅值变化是其余采样点的 6倍。验证了基于 Volterra滤波器的混沌预测模型能够有效地检测出海面微弱信号。
图10(a) 海杂波混沌预测真实值和Volterra预测值
图10(b) 预测误差
3.2视频帧间关联小目标检测跟踪算法
当前的图像分割技术,如U-Net和Mask R-CNN,已经在多个领域显示出极高的效率和精确度,特别是在处理复杂背景下的小目标分割上。这些模型在医学影像、卫星图像等领域的成功应用证明了它们的有效性和适用性。课题修改后的XMem模型在视频帧间的信息传递方面具有高效的处理能力。它可以整合多帧信息,预测目标在未来帧中的状态,已在视频对象跟踪等任务中得到验证。课题所提融合技术能够结合过去和未来的数据来提高目标检测和跟踪的准确性。这种策略在视频处理和多传感器融合领域已被广泛使用。
图11 系统的交互流程
3.3多尺度特征提取与模型融合方法
将CNN与Transformer结合的网络架构已在图像识别和分类中表现出优异的性能,尤其是在处理需要同时捕捉局部和全局信息的任务上。使用这种结构来处理雷达图像中的小目标是具有创新性和前瞻性的。Tridentnet架构通过将单个尺度图像作为输入,然后通过并行分支创建特定于尺度的特征映射,其中卷积共享相同的参数,但具有不同的扩张率。在多尺度特征提取网络已在视觉目标检测中展示了其优势,特别是在处理不同尺寸和复杂度的目标时。
在资源可行性方面,实施多尺度特征提取的混合网络需要较高的计算资源,但随着GPU和TPU等硬件的可用性,这一需求可以得到满足。此外,已有的预训练模型和开源技术可以减少开发时间和成本。
图12 Trident Network
3.4目标检测数据集与训练策略优化
数据增强技术已广泛应用于机器学习,特别是在训练数据量有限的情况下,能有效提高模型的泛化能力。结合手动和自动化标注将提高数据的质量和多样性。此外,使用迁移学习方法适配预训练模型到特定的雷达图像检测任务已被证明是提高训练效率和模型性能的有效策略。