嵌入式算法移植优化学习笔记4——模型压缩和剪枝

模型部署的三大挑战

1.模型大小:CNN优异的性能表现来源于上百万可训练的参数。那些参数和网络结构信息需要被存储到硬盘,然后在推理期间加载到内存中。模型较大对于嵌入式设备来说是一个很大的负担;
2.运行时占用内存:在推理期间,CNN的中间激活值/响应存储空间甚至需要比存储模型参数的大,即使batchsize是1.这对于高性能的GPU来说不是问题,但对于低计算能力的许多应用来说这是不可承担的;
3.计算量:在高分辨率图片上卷积操作可能会计算密集,一个大的CNN在嵌入式设备上可能要花费几分钟来处理一张单个图片,这使得在真实应用中采用很不现实

参考:
1、https://www.cnblogs.com/chumingqian/articles/11505153.html
2、https://blog.csdn.net/qq_38109843/article/details/107234801
3、https://blog.csdn.net/moxibingdao/article/details/106666957
4、网课:https://edu.csdn.net/learn/29887
5、浅析张量分解(Tensor Decomposition)
6、network sliming:加快模型速度同时不损失精度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翟羽嚄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值