归一化3次多项式速度规划

一、问题描述

  给定插补总长度 L L L,速度限制 v l i m v_{lim} vlim,计算总运动时间 T T T,规划归一化3次多项式 s ( u ) s(u) s(u) ( u = t / T u=t/T u=t/T为归一化变量),使其满足以下条件:
{ s ( 0 ) = 0 s ′ ( 0 ) = 0 s ( 1 ) = 1 s ′ ( 1 ) = 0 (1) \begin{cases} s(0)=0 \\ s'(0)=0 \\ s(1)=1 \\ s'(1)=0 \tag 1 \end{cases} s(0)=0s(0)=0s(1)=1s(1)=0(1)
  并使得,3次多项式轨迹 l ( t ) l(t) l(t)的最大速度 v m a x v_{max} vmax满足:
v m a x ≤ v l i m (2) v_{max}\leq v_{lim} \tag 2 vmaxvlim(2)

二、推导步骤

  设归一化3次多项式为:
s ( u ) = a 0 + a 1 u + a 2 u 2 + a 3 u 3 , u ∈ [ 0 , 1 ] (3) s(u)=a_0+a_1u+a_2u^2+a_3u^3,u\in[0,1]\tag 3 s(u)=a0+a1u+a2u2+a3u3,u[0,1](3)
  一阶导数为:
s ′ ( u ) = a 1 + 2 a 2 u + 3 a 3 u 2 (4) s'(u)=a_1+2a_2u+3a_3u^2\tag 4 s(u)=a1+2a2u+3a3u2(4)
  根据式(1)得:
{ a 0 = 0 a 1 = 0 a 0 + a 1 + a 2 + a 3 = 1 a 1 + 2 a 2 + 3 a 3 = 0 (5) \begin{cases} a_0=0 \\ a_1=0 \\ a_0+a_1+a_2+a_3=1 \\ a_1+2a_2+3a_3=0 \\ \tag 5 \end{cases} a0=0a1=0a0+a1+a2+a3=1a1+2a2+3a3=0(5)
  由上式解得: a 0 = 0 , a 1 = 0 , a 2 = 3 , a 3 = − 2 a_0=0,a_1=0,a_2=3,a_3=-2 a0=0,a1=0,a2=3,a3=2
  归一化3次多项式为:
{ s ( u ) = 3 u 2 − 2 u 3 s ′ ( u ) = 6 u − 6 u 2 (6) \begin{cases} s(u)=3u^2-2u^3 \\ s'(u)=6u-6u^2 \\ \tag 6 \end{cases} {s(u)=3u22u3s(u)=6u6u2(6)
  令二阶导数 s ′ ′ ( u ) = 6 − 12 u = 0 s''(u)=6-12u=0 s(u)=612u=0,解得 u = 1 / 2 u=1/2 u=1/2,此时归一化3次多项式的速度最大值为 s m a x ′ ( u ) = s ′ ( 1 / 2 ) = 6 ( 1 / 2 ) − 6 ( 1 / 2 ) 2 = 1.5 s_{max}'(u)=s'(1/2)=6(1/2)-6(1/2)^2=1.5 smax(u)=s(1/2)=6(1/2)6(1/2)2=1.5
  因为:
l ( t ) = L s ( u ) (7) l(t)=Ls(u)\tag 7 l(t)=Ls(u)(7)
  两边对 t t t求导得:
v ( t ) = L s ′ ( u ) d u d t = L T s ′ ( u ) (8) v(t)=Ls'(u)\frac{du}{dt}=\frac{L}{T}s'(u)\tag 8 v(t)=Ls(u)dtdu=TLs(u)(8)
  为满足式(2),则对于所有 u ∈ [ 0 , 1 ] u\in[0,1] u[0,1]有:
L T s ′ ( u ) ≤ v l i m (9) \frac{L}{T}s'(u)\leq v_{lim} \tag 9 TLs(u)vlim(9)
  上式写成:
T ≥ L s ′ ( u ) v l i m (10) T\geq\frac{Ls'(u)}{v_{lim}} \tag {10} TvlimLs(u)(10)
  为使上式恒成立,有:
T ≥ L s m a x ′ ( u ) v l i m = 1.5 L v l i m (11) T\geq \frac{Ls_{max}'(u)}{v_{lim}}= \frac{1.5L}{v_{lim}}\tag {11} TvlimLsmax(u)=vlim1.5L(11)
   T T T取等号以达到时间最短的速度规划。

三、MATLAB代码

clc;
clear;
close all;
syms us ue ps pe vs ve real

%% 通用3次多项式
a = [1, us, us^2, us^3
   0, 1, 2*us, 3*us^2
   1, ue, ue^2, ue^3
   0, 1, 2*ue, 3*ue^2] \ [ps; vs; pe; ve];
a = [simplify(a(1)), simplify(a(2)), simplify(a(3)), simplify(a(4))]'

%{
s = a0 + a1*u + a2*u^2 + a3*u^3
a0 = -(pe*us^3 - ps*ue^3 - 3*pe*ue*us^2 + 3*ps*ue^2*us - ue*us^3*ve
    + ue^3*us*vs + ue^2*us^2*ve - ue^2*us^2*vs)/(ue - us)^3
a1 = (ue^3*vs - us^3*ve - ue*us^2*ve + 2*ue^2*us*ve - 2*ue*us^2*vs
    + ue^2*us*vs - 6*pe*ue*us + 6*ps*ue*us)/(ue - us)^3
a2 = (3*pe*ue + 3*pe*us - 3*ps*ue - 3*ps*us - ue^2*ve - 2*ue^2*vs
    + 2*us^2*ve + us^2*vs - ue*us*ve + ue*us*vs)/(ue - us)^3
a3 = -(2*pe - 2*ps - ue*ve - ue*vs + us*ve + us*vs)/(ue - us)^3
%}

%% 归一化3次多项式
us = 0;
ue = 1;
ps = 0;
pe = 1;
vs = 0;
ve = 0;
a = eval(a)

deltaU = 0.01;
u = 0 : deltaU : 1;
s = a(1) + a(2) * u + a(3) * u.^2 + a(4) * u.^3;
v = a(2) + 2 * a(3) * u + 3 * a(4) * u.^2;
figure(1)
set(gcf, 'color', 'w')
subplot(2, 1, 1)
plot(u, s)
hold on
plot([0 1], [1 1], 'r--')
plot([1 1], [0 1], 'r--')
title('归一化3次多项式位置曲线')
xlabel('u')
ylabel('s(u)')
box off

subplot(2, 1, 2)
plot(u, v)
hold on
plot(0.5, 1.5, 'ro')
plot([0 0.5], [1.5 1.5], 'r--')
plot([0.5 0.5], [0 1.5], 'r--')
title('归一化3次多项式速度曲线')
xlabel('u')
ylabel('s''(u)')
box off

%% 归一化3次多项式实例化
L = 100;        %mm
vlim = 200;     %mm/s
dt = 0.001;     %s
T = (1.5 * L) / vlim;
t = 0 : dt : T;
u = t / T;
if abs(t(end) - T) > 1.0e-8
   t = [t, T];
   u = [u, 1];
end
s = a(1) + a(2) * u + a(3) * u.^2 + a(4) * u.^3;
v = a(2) + 2 * a(3) * u + 3 * a(4) * u.^2;
pos = L * s;
vel = (L / T) * v;

figure(2)
set(gcf, 'color', 'w')
subplot(2, 1, 1)
plot(t, pos)
hold on
plot([0 T], [L L], 'r--')
plot([T T], [0 L], 'r--')
title('3次多项式位置曲线')
xlabel('t/s')
ylabel('pos/mm')
box off

subplot(2, 1, 2)
plot(t, vel)
hold on
plot(0.5*T, 1.5*L/T, 'ro')
plot([0 0.5*T], [1.5*L/T 1.5*L/T], 'r--')
plot([0.5*T 0.5*T], [0 1.5*L/T], 'r--')
title('3次多项式速度曲线')
xlabel('t/s')
ylabel('vel/ mm/s')
box off

归一化3次多项式
归一化3次多项式实例化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值