车间调度|基于遗传算法求解复杂车间调度问题附Matlab代码

本文介绍了遗传算法在车间调度问题中的应用,详细阐述了算法流程,包括初始化种群、适应度评估、选择、交叉和变异操作。通过MATLAB实现,展示了解决复杂车间调度问题的有效方法,强调了实际应用中的调整和优化需求。
摘要由CSDN通过智能技术生成

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

车间调度是制造业中一个非常重要的问题,它涉及到如何合理地安排生产设备和人力资源,以最大程度地提高生产效率和降低成本。在实际生产中,车间调度问题往往非常复杂,涉及到大量的生产设备、工序、零部件以及人员等因素,因此需要借助于一些高效的算法来求解。

遗传算法是一种常用的优化算法,它模拟了自然界中的遗传和进化过程,通过不断地迭代和优化,寻找到最优解。在车间调度问题中,遗传算法能够很好地应用,通过不断地调整生产顺序和资源分配,找到最优的生产计划。

下面我们来介绍一下基于遗传算法求解复杂车间调度问题的算法流程:

  1. 初始化种群:首先需要随机生成一定数量的个体,每个个体代表了一个可能的生产计划。每个个体包括了一系列的工序和资源分配方案。

  2. 适应度评估:对于每个个体,需要计算其适应度值,即该生产计划的优劣程度。适应度值的计算可以根据生产效率、成本和资源利用率等指标来进行评估。

  3. 选择操作:根据适应度值,选择一定数量的个体作为父代,用于繁殖下一代个体。通常选择适应度较高的个体作为父代。

  4. 交叉操作:通过交叉操作,将父代个体的染色体进行交换和重组,产生新的个体。这样可以获得更多的生产计划方案,增加了搜索的多样性。

  5. 变异操作:对新生成的个体进行变异操作,引入一定的随机性,以防止陷入局部最优解。变异操作可以是对染色体中的基因进行随机调整或交换。

  6. 重复迭代:重复进行选择、交叉和变异操作,直到满足终止条件。通常可以设置迭代次数或者适应度值收敛的条件作为终止条件。

  7. 结果输出:最终得到的个体就是最优的生产计划方案,可以输出作为车间的实际生产调度。

通过上述算法流程,基于遗传算法求解复杂车间调度问题能够得到较好的结果。当然,在实际应用中,还需要根据具体的生产情况和目标进行一定的调整和优化。希望这篇文章能够对车间调度算法有所帮助,谢谢阅读!

📣 部分代码

gongjian_1=[11 1 16;12 2 15;13 3 12;14 2 8];gongjian_2=[21 1 9;22 2 20;23 3 19;24 2 21;25 2 7];gongjian_3=[31 1 14;32 2 17;33 3 10;34 1 11;35 2 18];gj1_long=size(gongjian_1,1);gj2_long=size(gongjian_2,1);gj3_long=size(gongjian_3,1);%--------------------------种群初始化------------------------------------%seed=[1 1 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 1 2 2 2 2 2 3 3 3 3 3 ];%种子,前14位表示加工位置,数字1表示此种设备的第一台设备。seed_length=length(seed);Chrom=zeros(10,seed_length);%预定义零矩阵,用于存数10个染色体NIND=size(Chrom,1);%种群大小10WNumber=size(Chrom,2);%染色体长度为10XOVR=0.2;%交叉概率=0.2MUTR=0.03;seed_hou=seed(15:WNumber);for i=1:NIND    Chrom(i,1:14)=round(1+rand(1,14));    Chrom(i,15:WNumber)=seed_hou(randperm(numel(seed_hou)));%生成染色体并赋到矩阵各行endtime_opt=zeros(NIND,200);% 预定义20*100的矩阵存储100代种群中的各个个体时间generations=200;P_b=zeros(generations,WNumber);%% 迭代开始for generation=1:generations

⛳️ 运行结果

🔗 参考文献

[1] 于善,袁逸萍,李晓娟,等.MATLAB下基于遗传算法作业车间调度系统开发[J].机械工程与自动化, 2015(6):4.DOI:10.3969/j.issn.1672-6413.2015.06.003.

[2] 陈浩哲,王晨升,朱宏波,等.一种基于遗传算法的作业车间调度问题的解决方案[J].  2018.

[3] 栾飞,傅卫平.改进遗传算法求解静态车间调度问题[J].陕西科技大学学报(自然科学版), 2013.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值