✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
车间调度是制造业中一个非常重要的问题,它涉及到如何合理地安排生产设备和人力资源,以最大程度地提高生产效率和降低成本。在实际生产中,车间调度问题往往非常复杂,涉及到大量的生产设备、工序、零部件以及人员等因素,因此需要借助于一些高效的算法来求解。
遗传算法是一种常用的优化算法,它模拟了自然界中的遗传和进化过程,通过不断地迭代和优化,寻找到最优解。在车间调度问题中,遗传算法能够很好地应用,通过不断地调整生产顺序和资源分配,找到最优的生产计划。
下面我们来介绍一下基于遗传算法求解复杂车间调度问题的算法流程:
-
初始化种群:首先需要随机生成一定数量的个体,每个个体代表了一个可能的生产计划。每个个体包括了一系列的工序和资源分配方案。
-
适应度评估:对于每个个体,需要计算其适应度值,即该生产计划的优劣程度。适应度值的计算可以根据生产效率、成本和资源利用率等指标来进行评估。
-
选择操作:根据适应度值,选择一定数量的个体作为父代,用于繁殖下一代个体。通常选择适应度较高的个体作为父代。
-
交叉操作:通过交叉操作,将父代个体的染色体进行交换和重组,产生新的个体。这样可以获得更多的生产计划方案,增加了搜索的多样性。
-
变异操作:对新生成的个体进行变异操作,引入一定的随机性,以防止陷入局部最优解。变异操作可以是对染色体中的基因进行随机调整或交换。
-
重复迭代:重复进行选择、交叉和变异操作,直到满足终止条件。通常可以设置迭代次数或者适应度值收敛的条件作为终止条件。
-
结果输出:最终得到的个体就是最优的生产计划方案,可以输出作为车间的实际生产调度。
通过上述算法流程,基于遗传算法求解复杂车间调度问题能够得到较好的结果。当然,在实际应用中,还需要根据具体的生产情况和目标进行一定的调整和优化。希望这篇文章能够对车间调度算法有所帮助,谢谢阅读!
📣 部分代码
gongjian_1=[11 1 16;12 2 15;13 3 12;14 2 8];
gongjian_2=[21 1 9;22 2 20;23 3 19;24 2 21;25 2 7];
gongjian_3=[31 1 14;32 2 17;33 3 10;34 1 11;35 2 18];
gj1_long=size(gongjian_1,1);
gj2_long=size(gongjian_2,1);
gj3_long=size(gongjian_3,1);
%--------------------------种群初始化------------------------------------%
seed=[1 1 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 1 2 2 2 2 2 3 3 3 3 3 ];%种子,前14位表示加工位置,数字1表示此种设备的第一台设备。
seed_length=length(seed);
Chrom=zeros(10,seed_length);%预定义零矩阵,用于存数10个染色体
NIND=size(Chrom,1);%种群大小10
WNumber=size(Chrom,2);%染色体长度为10
XOVR=0.2;%交叉概率=0.2
MUTR=0.03;
seed_hou=seed(15:WNumber);
for i=1:NIND
Chrom(i,1:14)=round(1+rand(1,14));
Chrom(i,15:WNumber)=seed_hou(randperm(numel(seed_hou)));%生成染色体并赋到矩阵各行
end
time_opt=zeros(NIND,200);% 预定义20*100的矩阵存储100代种群中的各个个体时间
generations=200;
P_b=zeros(generations,WNumber);
%% 迭代开始
for generation=1:generations
⛳️ 运行结果
🔗 参考文献
[1] 于善,袁逸萍,李晓娟,等.MATLAB下基于遗传算法作业车间调度系统开发[J].机械工程与自动化, 2015(6):4.DOI:10.3969/j.issn.1672-6413.2015.06.003.
[2] 陈浩哲,王晨升,朱宏波,等.一种基于遗传算法的作业车间调度问题的解决方案[J]. 2018.
[3] 栾飞,傅卫平.改进遗传算法求解静态车间调度问题[J].陕西科技大学学报(自然科学版), 2013.