基于Matlab检测多元数据集中的异常值

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在数据分析和统计学中,检测异常值是一个非常重要的步骤。异常值是指与其他观测值相比具有显著不同特征的观测值。在多元数据集中,异常值可能会对分析结果产生严重影响,因此及早发现和处理异常值是至关重要的。

要检测多元数据集中的异常值,首先需要对数据集进行可视化和描述性统计分析。通过绘制散点图、箱线图和直方图等图表,可以直观地发现数据中的异常值。同时,通过计算均值、标准差、中位数等统计指标,也可以初步了解数据的分布情况。

除了可视化和描述性统计分析,还可以利用一些统计方法来检测异常值。其中,最常用的方法包括Z得分法、箱线图法和距离法。Z得分法是通过计算观测值与均值的标准差之差来判断是否为异常值;箱线图法则是通过观察数据的四分位数范围来判断异常值;距离法则是通过计算观测值与其他观测值之间的距离来判断异常值。

除了统计方法,还可以利用机器学习算法来检测异常值。一些常用的机器学习算法,如孤立森林算法和LOF(局部异常因子)算法,都可以用来识别多元数据集中的异常值。

在检测到异常值之后,需要及时对异常值进行处理。处理异常值的方法包括删除异常值、替换异常值和将异常值作为特殊情况进行处理等。根据具体的数据情况和分析目的,选择合适的处理方法是非常重要的。

总之,检测多元数据集中的异常值是数据分析和统计学中的重要环节。通过可视化、描述性统计分析、统计方法和机器学习算法等多种手段,可以有效地发现和处理数据中的异常值,从而保证分析结果的准确性和可靠性。希望本文对大家有所帮助,谢谢阅读!

📣 部分代码

%% INPUT:%   - X     : N-by-d array of d-dimensional data points/vectors, where N is%             the total number of samples.%   - Co    : optional input argument specifying the starting point for the%             optimization. Co=(W'*X)/sum(W) is the default setting; see %             definition of W below.%   - opt   : optional input argument specifying converge criteria;%             opt=[Nmax tol], where Nmax is maximum number of iterations%             and tol is maximum change in position of the median %             between two successive iterations. opt=[50 1E-6] is the %             default setting. Optimization terminates when either one%             of the above criteria is met.%   - W     : optional input argument. W is a N-by-1 vector of (positive) %             weights assigned to the points in X. W=ones(N,1)/N is the %             default setting.%% OUTPUT:%   - C     : 1-by-d vector specifying geometric median of X.     %   - E     : 1-by-(K+1) vector containing values of the total (weighted) %             absolute distance from X to C_k where C_k is the estimate of%             C at iteration k; K is the total number of iterations.%             E(1) corresponds to initialization.%% REFERENCES:% [1] http://en.wikipedia.org/wiki/Geometric_median%% AUTHOR: Anton Semechko (a.semechko@gmail.com)%if nargin<3 || isempty(opt), opt=[50 1E-6]; endopt=abs(opt);if ~isnumeric(X) || ~ismatrix(X)    error('1st input argument (X) must be a 2D array, with observations along the rows')endif numel(opt)~=2 || ~isnumeric(opt)    error('Converge criteria must be specified as a 1-by-2 array; [Nmax tol]. See function description for more info.');endE=[];if isempty(X), C=[]; return; endd=size(X,2);if nargin<4 || isempty(W)    W=ones(size(X,1),1); elseif numel(W)~=size(X,1) || sum(W<0)>1    error('Invalid format for 4th input argument (W)')endW=abs(W(:));W=W/sum(W);if nargin<2 || isempty(Co)    Co=W'*X;endif numel(Co)~=d    error('Dimensionality of the starting point does not match dimensionality of the data')endCo=Co(:)';if d==1, Co=median(X); end% Sum of distancesif nargout>1    E=W'*sqrt(sum(bsxfun(@minus,X,Co).^2,2));end% Compute geometric medianC=Co; dC=Inf; opt(2)=max(opt(2).^2,1E-16); a=1E-1;n=1;while n<=opt(1) && dC>opt(2)        n=n+1;        w=sqrt(sum(bsxfun(@minus,X,C).^2,2))./W;        if nargout>1, E(1,n)=sum(w); end %#ok<*AGROW>        w=1./(w+a); % a is added for 2 reasons: 1) to avoid potential division by 0, and 2) to help overcome local minima when C is close to one of the sample points         Cn=sum(bsxfun(@times,X,w),1)/sum(w);        dC=sum((C-Cn).^2);    C=Cn;    a=max(a/10,eps); % relax regularization parameter a    %fprintf('%3u   %.3E \n',n,sqrt(dC/opt(2)))end

⛳️ 运行结果

🔗 参考文献

[1]潘丽静.基于Matlab语言的统计数据异常值检验[J].赤峰学院学报:自然科学版, 2012(21):2.DOI:10.3969/j.issn.1673-260X.2012.21.004.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值