✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在数据分析和统计学中,检测异常值是一个非常重要的步骤。异常值是指与其他观测值相比具有显著不同特征的观测值。在多元数据集中,异常值可能会对分析结果产生严重影响,因此及早发现和处理异常值是至关重要的。
要检测多元数据集中的异常值,首先需要对数据集进行可视化和描述性统计分析。通过绘制散点图、箱线图和直方图等图表,可以直观地发现数据中的异常值。同时,通过计算均值、标准差、中位数等统计指标,也可以初步了解数据的分布情况。
除了可视化和描述性统计分析,还可以利用一些统计方法来检测异常值。其中,最常用的方法包括Z得分法、箱线图法和距离法。Z得分法是通过计算观测值与均值的标准差之差来判断是否为异常值;箱线图法则是通过观察数据的四分位数范围来判断异常值;距离法则是通过计算观测值与其他观测值之间的距离来判断异常值。
除了统计方法,还可以利用机器学习算法来检测异常值。一些常用的机器学习算法,如孤立森林算法和LOF(局部异常因子)算法,都可以用来识别多元数据集中的异常值。
在检测到异常值之后,需要及时对异常值进行处理。处理异常值的方法包括删除异常值、替换异常值和将异常值作为特殊情况进行处理等。根据具体的数据情况和分析目的,选择合适的处理方法是非常重要的。
总之,检测多元数据集中的异常值是数据分析和统计学中的重要环节。通过可视化、描述性统计分析、统计方法和机器学习算法等多种手段,可以有效地发现和处理数据中的异常值,从而保证分析结果的准确性和可靠性。希望本文对大家有所帮助,谢谢阅读!
📣 部分代码
%
% INPUT:
% - X : N-by-d array of d-dimensional data points/vectors, where N is
% the total number of samples.
% - Co : optional input argument specifying the starting point for the
% optimization. Co=(W'*X)/sum(W) is the default setting; see
% definition of W below.
% - opt : optional input argument specifying converge criteria;
% opt=[Nmax tol], where Nmax is maximum number of iterations
% and tol is maximum change in position of the median
% between two successive iterations. opt=[50 1E-6] is the
% default setting. Optimization terminates when either one
% of the above criteria is met.
% - W : optional input argument. W is a N-by-1 vector of (positive)
% weights assigned to the points in X. W=ones(N,1)/N is the
% default setting.
%
% OUTPUT:
% - C : 1-by-d vector specifying geometric median of X.
% - E : 1-by-(K+1) vector containing values of the total (weighted)
% absolute distance from X to C_k where C_k is the estimate of
% C at iteration k; K is the total number of iterations.
% E(1) corresponds to initialization.
%
% REFERENCES:
% [1] http://en.wikipedia.org/wiki/Geometric_median
%
% AUTHOR: Anton Semechko (a.semechko@gmail.com)
%
if nargin<3 || isempty(opt), opt=[50 1E-6]; end
opt=abs(opt);
if ~isnumeric(X) || ~ismatrix(X)
error('1st input argument (X) must be a 2D array, with observations along the rows')
end
if numel(opt)~=2 || ~isnumeric(opt)
error('Converge criteria must be specified as a 1-by-2 array; [Nmax tol]. See function description for more info.');
end
E=[];
if isempty(X), C=[]; return; end
d=size(X,2);
if nargin<4 || isempty(W)
W=ones(size(X,1),1);
elseif numel(W)~=size(X,1) || sum(W<0)>1
error('Invalid format for 4th input argument (W)')
end
W=abs(W(:));
W=W/sum(W);
if nargin<2 || isempty(Co)
Co=W'*X;
end
if numel(Co)~=d
error('Dimensionality of the starting point does not match dimensionality of the data')
end
Co=Co(:)';
if d==1, Co=median(X); end
% Sum of distances
if nargout>1
E=W'*sqrt(sum(bsxfun(@minus,X,Co).^2,2));
end
% Compute geometric median
C=Co; dC=Inf; opt(2)=max(opt(2).^2,1E-16);
a=1E-1;
n=1;
while n<=opt(1) && dC>opt(2)
n=n+1;
w=sqrt(sum(bsxfun(@minus,X,C).^2,2))./W;
if nargout>1, E(1,n)=sum(w); end %#ok<*AGROW>
w=1./(w+a); % a is added for 2 reasons: 1) to avoid potential division by 0, and 2) to help overcome local minima when C is close to one of the sample points
Cn=sum(bsxfun(@times,X,w),1)/sum(w);
dC=sum((C-Cn).^2);
C=Cn;
a=max(a/10,eps); % relax regularization parameter a
%fprintf('%3u %.3E \n',n,sqrt(dC/opt(2)))
end
⛳️ 运行结果
🔗 参考文献
[1]潘丽静.基于Matlab语言的统计数据异常值检验[J].赤峰学院学报:自然科学版, 2012(21):2.DOI:10.3969/j.issn.1673-260X.2012.21.004.