【XGBOOST分类】基于海象优化算法优化集成学习算法WOA-XGBOOST实现故障数据分类附matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

​摘要

本文提出了一种基于海象优化算法(WOA)优化集成学习算法的故障数据分类方法,即WOA-XGBOOST。该方法首先利用WOA算法优化XGBOOST算法的超参数,然后利用优化后的XGBOOST算法对故障数据进行分类。实验结果表明,WOA-XGBOOST方法能够有效提高故障数据分类的准确率和鲁棒性。

1. 故障数据分类概述

故障数据分类是故障诊断中的一个重要环节。故障数据分类的目的是将故障数据划分为不同的类别,以便于故障诊断。故障数据分类的方法有很多,其中集成学习算法是一种常用的故障数据分类方法。集成学习算法通过将多个基学习器组合起来,可以有效提高故障数据分类的准确率和鲁棒性。

2. XGBOOST算法简介

XGBOOST算法是一种常用的集成学习算法。XGBOOST算法通过将多个决策树组合起来,可以有效提高故障数据分类的准确率和鲁棒性。XGBOOST算法的超参数包括学习率、决策树的深度、决策树的叶子节点数等。这些超参数对XGBOOST算法的性能有很大的影响。

3. 海象优化算法简介

海象优化算法(WOA)是一种新兴的优化算法。WOA算法模拟海象在水中觅食的行为,可以有效地求解各种优化问题。WOA算法的优点是收敛速度快、鲁棒性强。

4. WOA-XGBOOST算法

WOA-XGBOOST算法是将WOA算法与XGBOOST算法相结合的一种故障数据分类方法。WOA-XGBOOST算法首先利用WOA算法优化XGBOOST算法的超参数,然后利用优化后的XGBOOST算法对故障数据进行分类。

WOA-XGBOOST算法的步骤如下:

  1. 初始化WOA算法的参数,包括种群规模、最大迭代次数等。

  2. 初始化XGBOOST算法的超参数。

  3. 利用WOA算法优化XGBOOST算法的超参数。

  4. 利用优化后的XGBOOST算法对故障数据进行分类。

​📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

5. 实验结果与分析

为了验证WOA-XGBOOST算法的性能,我们将其与传统的XGBOOST算法进行了比较。实验结果表明,WOA-XGBOOST算法能够有效提高故障数据分类的准确率和鲁棒性。

图1给出了WOA-XGBOOST算法和传统的XGBOOST算法在不同数据集上的分类准确率比较。可以看出,WOA-XGBOOST算法在所有数据集上的分类准确率都高于传统的XGBOOST算法。

图2给出了WOA-XGBOOST算法和传统的XGBOOST算法在不同噪声水平下的分类准确率比较。可以看出,WOA-XGBOOST算法在不同噪声水平下的分类准确率都高于传统的XGBOOST算法。

6. 结论

本文提出了一种基于海象优化算法优化集成学习算法的故障数据分类方法,即WOA-XGBOOST。该方法首先利用WOA算法优化XGBOOST算法的超参数,然后利用优化后的XGBOOST算法对故障数据进行分类。实验结果表明,WOA-XGBOOST方法能够有效提高故障数据分类的准确率和鲁棒性。

🔗 参考文献

[1] 蔡秋茹.基于XGBoost集成学习算法的电动汽车价格预测[J].江苏技术师范学院学报:自然科学版, 2020, 026(006):P.33-43.

[2] 蒋晗晗.基于NN和XGBoost的旋转设备滚动轴承故障分类算法研究[D].中国矿业大学(江苏)[2024-01-27].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值