✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
本文提出了一种基于蜜獾算法的无人机三维路径规划方法。该方法将无人机三维路径规划问题转化为优化问题,并利用蜜獾算法求解该优化问题。蜜獾算法是一种新的元启发式算法,具有较强的全局搜索能力和局部搜索能力。实验结果表明,该方法能够有效地规划出无人机在复杂地形下的三维航迹,并且具有较高的规划精度和鲁棒性。
1. 问题描述
无人机三维路径规划是指在三维空间中规划无人机的飞行路径,以使无人机能够安全、高效地完成任务。无人机三维路径规划问题是一个复杂的问题,需要考虑多种因素,如地形、障碍物、风场等。
2. 基于蜜獾算法的无人机三维路径规划方法
本文提出的基于蜜獾算法的无人机三维路径规划方法将无人机三维路径规划问题转化为优化问题,并利用蜜獾算法求解该优化问题。蜜獾算法是一种新的元启发式算法,具有较强的全局搜索能力和局部搜索能力。
蜜獾算法的具体步骤如下:
-
初始化种群。种群由一组随机生成的路径组成。
-
计算种群中每个路径的适应度。适应度函数根据路径的长度、平滑度、安全性等因素计算。
-
选择种群中适应度最高的路径作为父路径。
-
对父路径进行变异和交叉操作,生成新的路径。
-
将新的路径添加到种群中。
-
重复步骤2-5,直到满足终止条件。
📣 部分代码
function [V,F] = DrawCuboid(long, wide, pretty, x,y,z)
% Input:long wide pretty (position: x,y)
% long = 200; wide = 150; pretty = 5; x = 20; y =20;
V = [x y z; x+long y z; x y+wide z; x+long y+wide z; x y z+pretty; x+long y z+pretty; x y+wide z+pretty; x+long y+wide z+pretty];
F = [1 2 4 3; 5 6 8 7; 1 2 6 5; 3 4 8 7; 1 5 7 3; 2 6 8 4];
FC=[0,200,100]./255; % 障碍外观颜色
patch('Vertices',V,'Faces',F,'FaceColor',FC);
end
⛳️ 运行结果
3. 实验结果
本文将提出的方法与其他几种无人机三维路径规划方法进行了比较。实验结果表明,该方法能够有效地规划出无人机在复杂地形下的三维航迹,并且具有较高的规划精度和鲁棒性。
4. 结论
本文提出了一种基于蜜獾算法的无人机三维路径规划方法。该方法将无人机三维路径规划问题转化为优化问题,并利用蜜獾算法求解该优化问题。实验结果表明,该方法能够有效地规划出无人机在复杂地形下的三维航迹,并且具有较高的规划精度和鲁棒性。
🔗 参考文献
[1] 贾欢.基于多尺度分解的图像融合算法及其实现[D].北京理工大学[2024-01-30].DOI:CNKI:CDMD:2.1014.086925.
[2] 贾鹤鸣,饶洪华,王琢,等.基于改进蜜獾算法的无人机三维路径规划[J].龙岩学院学报, 2022(005):040.