✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着全球能源需求的不断增长,风能作为一种清洁、可再生的能源,其开发利用越来越受到重视。然而,风能具有间歇性和波动性,给电网的安全稳定运行带来了挑战。因此,准确的风电预测对于提高风电的利用率、降低电网运行成本至关重要。
近年来,机器学习方法在风电预测领域得到了广泛应用,其中核极限学习机(KELM)因其学习速度快、泛化能力强等优点受到关注。然而,KELM的性能受核参数和正则化参数等参数的影响,需要进行参数优化。鲸鱼优化算法(WOA)是一种新的元启发式算法,具有全局搜索能力强、收敛速度快等优点。
本文提出了一种基于改进鲸鱼算法优化核极限学习机(GSWOA-KELM)的风电回归预测模型。该模型首先对WOA进行改进,提高其全局搜索能力和收敛速度。然后,利用改进后的WOA优化KELM的核参数和正则化参数,获得最优的模型参数。最后,将GSWOA-KELM模型应用于实际风电场数据进行预测,并与其他预测模型进行比较。
1. 改进鲸鱼算法
WOA算法模拟座头鲸的捕食行为,是一种新的元启发式算法。其基本原理是:鲸鱼群体在搜索猎物时,会根据猎物的位置和距离进行位置更新。算法中,猎物的位置对应于最优解,鲸鱼的位置对应于解的候选值。
为了提高WOA的全局搜索能力和收敛速度,本文对WOA进行如下改进:
-
引入混沌映射:在鲸鱼的位置更新公式中引入混沌映射,可以增加算法的多样性,提高其全局搜索能力。
-
采用自适应权重策略:在鲸鱼的位置更新公式中采用自适应权重策略,可以根据迭代次数动态调整权重,提高算法的收敛速度。
2. 基于GSWOA优化的KELM模型
KELM是一种单隐层前馈神经网络,其学习速度快、泛化能力强。其基本原理是:将输入数据映射到高维特征空间,然后在高维特征空间中进行线性回归。
为了获得最优的KELM模型参数,本文利用改进后的WOA进行优化。具体步骤如下:
-
将KELM的核参数和正则化参数作为WOA的优化变量。
-
利用WOA对优化变量进行搜索,找到最优的参数组合。
-
利用最优参数训练KELM模型。
3. 实验结果与分析
为了验证GSWOA-KELM模型的有效性,将其应用于实际风电场数据进行预测,并与其他预测模型进行比较。实验结果表明:
-
GSWOA-KELM模型的预测精度优于其他预测模型。
-
GSWOA-KELM模型的预测误差更小,更稳定。
4. 结论
本文提出了一种基于改进鲸鱼算法优化核极限学习机(GSWOA-KELM)的风电回归预测模型。该模型通过改进WOA算法,提高了其全局搜索能力和收敛速度,并利用改进后的WOA优化KELM的核参数和正则化参数,获得了最优的模型参数。实验结果表明,GSWOA-KELM模型的预测精度优于其他预测模型,可以有效提高风电预测的准确性。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类