✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
1. 概述
图像聚类是图像分析和计算机视觉领域的重要研究方向之一,其目标是将图像中具有相似特征的像素点或区域分组,从而提取图像中的目标或结构信息。近年来,基于密度的噪声应用空间聚类 (DBSCAN) 算法在图像聚类领域得到了广泛的应用,并取得了良好的效果。
2. DBSCAN 算法原理
DBSCAN 算法是一种基于密度的聚类算法,其核心思想是:将密度高的区域视为簇,而密度低的区域视为噪声点。算法的核心参数包括:
-
ε-邻域: 以某个数据点为中心,半径为 ε 的圆形区域内包含的数据点的集合。
-
最小点数: 构成簇的最小数据点数。
算法的基本流程如下:
-
从数据集中随机选择一个未访问的数据点作为起始点。
-
计算该数据点的 ε-邻域内包含的数据点数。
-
若数据点数大于最小点数,则将该数据点及其 ε-邻域内所有数据点标记为同一个簇,并将其标记为已访问。
-
否则,将该数据点标记为噪声点。
-
重复步骤 1-4,直到所有数据点都被访问。
3. DBSCAN 算法在图像聚类中的应用
DBSCAN 算法在图像聚类中主要用于对图像进行分割或目标检测。例如,在图像分割中,可以将图像中的每个像素点视为一个数据点,并根据像素点的颜色、灰度值等特征计算其 ε-邻域。若某个像素点的 ε-邻域内包含的像素点颜色相似,则将该像素点与其 ε-邻域内所有像素点标记为同一个簇,从而实现图像分割。
在目标检测中,可以将图像中的每个目标区域视为一个数据点,并根据目标区域的形状、颜色等特征计算其 ε-邻域。若某个目标区域的 ε-邻域内包含的其他目标区域与其形状、颜色等特征相似,则将该目标区域与其 ε-邻域内所有目标区域标记为同一个簇,从而实现目标检测。
4. DBSCAN 算法的优缺点
DBSCAN 算法具有以下优点:
-
对数据分布的形状不敏感,可以处理任意形状的簇。
-
不需要预先指定簇的数量。
-
可以有效地识别噪声点。
DBSCAN 算法也存在一些缺点:
-
对参数 ε 和最小点数的选择比较敏感。
-
算法的时间复杂度较高,尤其是在数据量较大时。
5. 总结
DBSCAN 算法是一种有效的图像聚类算法,在图像分割、目标检测等领域得到了广泛的应用。该算法
⛳️ 运行结果
🔗 参考文献
[1]冯少荣,肖文俊.DBSCAN聚类算法的研究与改进[J].中国矿业大学学报, 2008, 37(1):7.DOI:CNKI:SUN:ZGKD.0.2008-01-022.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类