【数据聚类】基于密度的噪声应用空间聚类 (DBSCAN)附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

1. 概述

图像聚类是图像分析和计算机视觉领域的重要研究方向之一,其目标是将图像中具有相似特征的像素点或区域分组,从而提取图像中的目标或结构信息。近年来,基于密度的噪声应用空间聚类 (DBSCAN) 算法在图像聚类领域得到了广泛的应用,并取得了良好的效果。

2. DBSCAN 算法原理

DBSCAN 算法是一种基于密度的聚类算法,其核心思想是:将密度高的区域视为簇,而密度低的区域视为噪声点。算法的核心参数包括:

  • ε-邻域: 以某个数据点为中心,半径为 ε 的圆形区域内包含的数据点的集合。

  • 最小点数: 构成簇的最小数据点数。

算法的基本流程如下:

  1. ​从数据集中随机选择一个未访问的数据点作为起始点。

  2. 计算该数据点的 ε-邻域内包含的数据点数。

  3. 若数据点数大于最小点数,则将该数据点及其 ε-邻域内所有数据点标记为同一个簇,并将其标记为已访问。

  4. 否则,将该数据点标记为噪声点。

  5. 重复步骤 1-4,直到所有数据点都被访问。

3. DBSCAN 算法在图像聚类中的应用

DBSCAN 算法在图像聚类中主要用于对图像进行分割或目标检测。例如,在图像分割中,可以将图像中的每个像素点视为一个数据点,并根据像素点的颜色、灰度值等特征计算其 ε-邻域。若某个像素点的 ε-邻域内包含的像素点颜色相似,则将该像素点与其 ε-邻域内所有像素点标记为同一个簇,从而实现图像分割。

在目标检测中,可以将图像中的每个目标区域视为一个数据点,并根据目标区域的形状、颜色等特征计算其 ε-邻域。若某个目标区域的 ε-邻域内包含的其他目标区域与其形状、颜色等特征相似,则将该目标区域与其 ε-邻域内所有目标区域标记为同一个簇,从而实现目标检测。

4. DBSCAN 算法的优缺点

DBSCAN 算法具有以下优点:

  • 对数据分布的形状不敏感,可以处理任意形状的簇。

  • 不需要预先指定簇的数量。

  • 可以有效地识别噪声点。

DBSCAN 算法也存在一些缺点:

  • 对参数 ε 和最小点数的选择比较敏感。

  • 算法的时间复杂度较高,尤其是在数据量较大时。

5. 总结

DBSCAN 算法是一种有效的图像聚类算法,在图像分割、目标检测等领域得到了广泛的应用。该算法

⛳️ 运行结果

🔗 参考文献

[1]冯少荣,肖文俊.DBSCAN聚类算法的研究与改进[J].中国矿业大学学报, 2008, 37(1):7.DOI:CNKI:SUN:ZGKD.0.2008-01-022.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值