✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着智能驾驶技术的快速发展,车辆避障系统已成为保障车辆安全行驶的关键技术之一。传统避障系统主要依赖于预设规则或简单的控制策略,在复杂环境中难以实现高效、安全的避障效果。模型预测控制 (MPC) 作为一种先进的控制方法,凭借其前瞻性预测和优化能力,为车辆避障系统提供了新的解决方案。然而,传统的MPC方法需要准确的车辆模型,在实际应用中面临着模型参数不确定性、环境变化等问题。为了解决这些问题,本文提出了一种基于自适应模型预测控制 (AMPC) 的车辆避障系统,旨在提高避障系统的鲁棒性和适应性。
1. 自适应模型预测控制 (AMPC)
1.1 MPC原理
MPC 是一种基于模型的优化控制方法,其核心思想是利用系统模型预测未来一段时间内系统的状态,并根据目标函数进行优化控制。MPC算法通过滚动优化,不断更新预测模型和控制策略,以应对环境变化和模型参数不确定性。
1.2 自适应模型预测控制 (AMPC)
传统的MPC方法需要准确的系统模型,而在实际应用中,车辆模型参数难以精确获得,并且会随着车辆状态、环境变化等因素而发生变化。为了解决这一问题,AMPC 引入了在线模型辨识机制,根据实时测量数据不断更新模型参数,提高模型预测精度。
2. 基于AMPC的车辆避障系统设计
2.1 系统架构
基于AMPC的车辆避障系统主要包括以下几个模块:
-
传感器模块: 负责感知周围环境,收集车辆自身状态和障碍物信息,例如激光雷达、摄像头、超声波传感器等。
-
模型预测控制模块: 利用AMPC算法,根据传感器信息预测车辆未来运动轨迹,并规划最佳避障路径。
-
执行模块: 根据MPC算法计算得到的控制指令,控制车辆转向、加速、刹车等动作,实现避障操作。
2.2 模型预测控制模块
模型预测控制模块是基于AMPC算法设计的,主要包括以下步骤:
-
模型辨识: 根据传感器信息,利用在线模型辨识算法实时更新车辆模型参数,例如车辆的质量、轮胎摩擦系数等。
-
轨迹预测: 根据更新后的车辆模型,利用MPC算法预测车辆未来一段时间内的运动轨迹。
-
路径规划: 根据预测轨迹和障碍物信息,利用路径规划算法规划出最佳避障路径。
-
控制指令生成: 根据规划出的路径,生成控制车辆运动的指令,例如转向角度、加速度等。
2.3 自适应模型辨识
为了提高模型预测精度,AMPC算法采用了在线模型辨识方法。常用的在线模型辨识方法包括递推最小二乘法 (RLS)、卡尔曼滤波等。本文采用RLS算法,根据实时测量数据不断更新车辆模型参数,提高模型预测精度。
2.4 路径规划算法
路径规划算法需要根据预测轨迹和障碍物信息,规划出最佳避障路径。常用的路径规划算法包括A算法、RRT算法等。本文采用A算法,该算法能够快速找到最短路径,并避免与障碍物发生碰撞。
3. 仿真实验
为了验证基于AMPC的车辆避障系统的性能,本文进行了仿真实验。仿真环境采用 MATLAB 软件,构建了包含车辆模型、障碍物模型、传感器模型的仿真平台。仿真结果表明,基于AMPC的车辆避障系统能够在复杂环境中实现安全、高效的避障操作,具有较好的鲁棒性和适应性。
4. 结论
本文提出了一种基于自适应模型预测控制的车辆避障系统,通过在线模型辨识和路径规划算法,有效提高了避障系统的鲁棒性和适应性。仿真结果表明,该系统能够在复杂环境中实现安全、高效的避障操作,为智能驾驶技术的发展提供了新的思路。
5. 未来展望
未来研究将进一步优化AMPC算法,提高模型预测精度和路径规划效率。同时,将探索将深度学习等人工智能技术融入车辆避障系统,提高系统的智能化水平。最终目标是实现完全自动化的车辆避障系统,保障车辆安全行驶。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类