✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
交通流量预测是智能交通系统中的核心问题之一,它为交通管理、路线规划、拥堵控制等提供了重要依据。传统的预测方法往往依赖于历史数据的时间序列模式,忽略了交通流量的时空特性。近年来,深度学习技术的兴起,特别是Transformer模型的出现,为时空预测带来了新的突破。然而,传统的Transformer模型在处理交通流量数据的复杂时空相关性方面仍存在不足,难以充分提取和利用多尺度特征。
针对上述问题,本文将基于经验模态分解 (Empirical Mode Decomposition, EMD) 和 Transformer 模型,提出一种新的时空预测模型 EMD-Transformer,并将其与传统的Transformer模型进行对比研究。EMD 能够有效地将复杂时间序列分解成多个不同尺度的固有模态函数 (Intrinsic Mode Function, IMF),从而提取出交通流量的多尺度特征。Transformer模型则能够捕捉到时间序列的长期依赖关系,并进行有效的特征提取和预测。
EMD-Transformer 模型
EMD-Transformer 模型的核心思想是利用EMD对交通流量数据进行多尺度特征提取,并将提取的特征输入到Transformer模型中进行时空预测。具体步骤如下:
-
EMD分解: 利用EMD将原始交通流量时间序列分解成多个IMF,每个IMF代表交通流量在不同时间尺度的特征。
-
特征提取: 对每个IMF进行特征提取,例如使用卷积神经网络 (CNN) 或循环神经网络 (RNN)。
-
Transformer编码: 将提取的特征输入到Transformer编码器中,进行时空特征提取和编码。
-
Transformer解码: 使用Transformer解码器对编码后的特征进行解码,并进行预测。
Transformer 模型
传统的Transformer模型是一种基于自注意力机制的序列到序列模型,能够捕捉时间序列的长期依赖关系。它主要由编码器和解码器组成,编码器将输入序列转换为特征表示,解码器则根据编码后的特征进行预测。
实验结果与分析
为了比较EMD-Transformer和Transformer模型的性能,本文在真实的交通流量数据集上进行了实验。实验结果表明:
-
EMD-Transformer模型在预测精度方面优于传统的Transformer模型。 EMD能够有效地提取交通流量的多尺度特征,从而提高预测模型的精度。
-
EMD-Transformer模型能够更好地捕捉交通流量的时空相关性。 Transformer模型能够有效地捕捉时间序列的长期依赖关系,而EMD-Transformer模型则进一步提升了对空间相关性的提取能力。
-
EMD-Transformer模型具有更高的鲁棒性。 EMD分解能够有效地消除噪声的影响,从而提高预测模型的鲁棒性。
结论
本文提出了一种基于EMD和Transformer模型的时空预测模型EMD-Transformer,并将其与传统的Transformer模型进行了对比研究。实验结果表明,EMD-Transformer模型在预测精度、时空相关性提取能力和鲁棒性方面均优于传统的Transformer模型。该研究为交通流量预测提供了新的思路,并为其他时空预测问题提供了参考。
未来展望
未来,我们将进一步研究以下方向:
-
改进EMD分解方法: 研究更有效的EMD分解方法,以提取更准确的交通流量多尺度特征。
-
结合其他深度学习技术: 将EMD-Transformer模型与其他深度学习技术相结合,例如图神经网络 (GNN) 和卷积神经网络 (CNN),进一步提升预测模型的性能。
-
应用于其他时空预测问题: 将EMD-Transformer模型应用于其他时空预测问题,例如气象预测、金融预测等。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类