2024年全国大学生数学建模A题-“板凳龙” 闹元宵参考代码及思路

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

🔥 内容介绍

“板凳龙”,又称“盘龙”,是浙闽地区的传统地方民俗文化活动。人们将少则几十条, 多则上百条的板凳首尾相连,形成蜿蜒曲折的板凳龙。盘龙时,龙头在前领头,龙身和龙尾相随盘旋,整体呈圆盘状。一般来说,在舞龙队能够自如地盘入和盘出的前提下,盘龙所需要的面积越小、行进速度越快,则观赏性越好。

某板凳龙由 223 节板凳组成,其中第 1 节为龙头,后面 221 节为龙身,最后 1 节为龙尾。龙头的板长为 341 cm,龙身和龙尾的板长均为 220 cm,所有板凳的板宽均为 30 cm。每节板凳上均有两个孔,孔径(孔的直径)为 5.5 cm,孔的中心距离最近的板头 27.5 cm(见图 1 和图 2)。相邻两条板凳通过把手连接(见图 3)。

问题 1 舞龙队沿螺距为 55 cm 的等距螺线顺时针盘入,各把手中心均位于螺线上。龙头前把手的行进速度始终保持 1 m/s。初始时,龙头位于螺线第 16 圈 A 点处(见图 4)。请给出从初始时刻到 300 s 为止,每秒整个舞龙队的位置和速度(指龙头、龙身和龙尾各前把手及龙尾后把手中心的位置和速度,下同),将结果保存到文件 result1.xlsx 中(模板文件见附件,其中“龙尾(后)”表示龙尾后把手,其余的均是前把手,结果保留 6 位小数,下同)。

同时在论文中给出 0 s、60 s、120 s、180 s、240 s、300 s 时,龙头前把手、龙头后面第 1、51、101、151、201 节龙身前把手和龙尾后把手的位置和速度(格式见表 1 和表 2)。

📣 赛题分析

难度: 中等偏上 适合专业: 工程力学、机械工程、物理、计算机科学、数学等专业的学生适合解答这一题。特别是有扎实几何建模、力学和动态模拟基础的同学 主要算法和模型: 1. 几何建模: 需要建立空间几何模型,可以用螺旋线方程、空间曲线运动方程来描述舞龙队的位置和速度。2. 动力学模拟: 可以使用微分方程或刚体动力学模拟工具。3. 数值计算与优化: 涉及优化空间,可能需要优化算法(如线性规划、非线性优化)。4. 仿真软件: MATLAB或Python等编程工具中的物理引擎或自定义仿真模块会是主要的工具

2. 坐标系建立与模型假设

为了方便分析,我们将板凳龙的运动轨迹投影到水平面上,建立以龙头初始位置 A 为原点,指向龙头运动方向为 x 轴正方向,垂直于 x 轴指向纸面外为 y 轴正方向的直角坐标系。

为了简化模型,我们做以下假设:

  • 每个板凳视为一个质点,其质量集中于把手中心。

  • 板凳之间连接的把手不可伸缩,且连接处无摩擦力。

  • 板凳龙的运动轨迹为完美的等距螺线,且螺线始终保持水平。

  • 龙头前把手的速度始终保持 1 m/s,且方向始终沿着螺线切线方向。

3. 数学模型

根据等距螺线的数学性质,我们可以得到以下公式:

通过对板凳龙盘入运动轨迹的分析,我们发现:

  • 龙头前把手的速度始终保持 1 m/s,而其他把手由于连接关系,速度会随着时间推移逐渐增加。

  • 由于螺线曲率的变化,龙身各把手的位置和速度会逐渐发生变化,呈现出螺旋状的运动轨迹。

  • 由于螺线曲率的变化,龙身各把手的速度方向会随着时间推移逐渐偏离 x 轴正方向,逐渐趋向于螺线切线方向。

🔗 参考代码

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

对于2024数学建模全国大赛A"板凳闹元宵"的第一问,我们可以采用以下步骤来解决: 1. 首先,我们需要建立板凳运动的数学模型。可以考虑使用质点系模型,将每个板凳视为一个质点。 2. 接下来,我们需要考虑板凳之间的相互作用力,以及板凳与地面的摩擦力。 3. 然后,我们可以使用牛顿第二定律来建立每个质点的运动方程。 4. 为了求解这些方程,我们可以使用数值方法,如欧拉法或-库塔法。 5. 最后,我们将使用MATLAB来实现这个模型,并进行仿真。 以下是一个简化的MATLAB代码示例,用于模拟板凳的运动: ```matlab % 参数设置 N = 10; % 板凳数量 L = 1; % 每个板凳的长度 m = 1; % 每个板凳的质量 g = 9.8; % 重力加速度 mu = 0.3; % 摩擦系数 % 初始条件 x = zeros(1,N); y = zeros(1,N); vx = zeros(1,N); vy = zeros(1,N); % 时间设置 dt = 0.01; t_end = 10; time = 0:dt:t_end; % 主循环 for t = time % 计算相互作用力 for i = 1:N if i > 1 Fx(i) = k*(x(i-1) - x(i) - L) + mu*m*g*sign(vx(i)); Fy(i) = k*(y(i-1) - y(i)) - m*g + mu*m*g*sign(vy(i)); else Fx(i) = mu*m*g*sign(vx(i)); Fy(i) = -m*g + mu*m*g*sign(vy(i)); end end % 更新速度和位置 vx = vx + Fx/m * dt; vy = vy + Fy/m * dt; x = x + vx * dt; y = y + vy * dt; % 绘图 clf; plot(x, y, 'o-'); axis([0 20 -5 5]); title(sprintf('Time: %.2f s', t)); drawnow; end ``` 这个代码提供了一个基本的框架,你可以根据具体的目要求进行调整和扩展。例如,你可能需要: 1. 调整相互作用力的计算方式。 2. 添加更复杂的边界条件。 3. 考虑空气阻力等因素。 4. 优化数值积分方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值