✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
**摘要:**比例-积分-微分 (PID) 控制器因其结构简单、鲁棒性强和易于实现等优点,在工业控制领域得到广泛应用。然而,PID参数整定一直是控制工程中的关键问题。传统PID参数整定方法依赖于经验或试错法,效率低下且难以获得最优控制性能。近年来,智能优化算法的发展为PID参数整定提供了新的思路。本文综述了粒子群优化 (PSO)、麻雀搜索算法 (SSA) 和灰狼优化 (GWO) 三种智能算法在PID参数整定中的应用,分析了各种算法的原理、优势和局限性,并探讨了未来研究方向,旨在为PID控制器的智能化参数整定提供参考。
关键词: PID控制;参数整定;粒子群优化;麻雀搜索算法;灰狼优化;智能算法
1 引言
PID控制器作为一种经典的反馈控制器,通过比例 (P)、积分 (I) 和微分 (D) 三个参数的组合,实现对控制对象的精确控制。PID控制器的应用涵盖了流程工业、电力系统、机器人控制等众多领域。尽管PID控制器的结构相对简单,但参数的正确选择对控制系统的性能至关重要。传统的PID参数整定方法,例如Ziegler-Nichols方法、Cohen-Coon方法等,虽然操作简便,但通常依赖于经验或试错法,无法保证控制系统的最优性能,且对于复杂或非线性系统,其适用性受到限制。
随着人工智能和计算能力的快速发展,智能优化算法在各个领域展现出强大的优化能力。这些算法通过模拟自然界的生物行为或物理现象,在搜索空间中寻找最优解,为PID参数整定提供了全新的思路。与传统方法相比,智能优化算法能够更有效地处理复杂系统的非线性、时变性和不确定性,并能够根据特定的性能指标自动调整PID参数,从而提高控制系统的性能。
本文重点关注粒子群优化 (PSO)、麻雀搜索算法 (SSA) 和灰狼优化 (GWO) 三种智能算法在PID参数整定中的应用。这些算法在优化领域具有广泛的影响力,并且已经被成功应用于各种工业控制系统中。本文将详细阐述这些算法的原理和在PID参数整定中的应用方法,并分析各自的优势和局限性。
2 智能优化算法简介
2.1 粒子群优化 (PSO)
粒子群优化算法 (Particle Swarm Optimization, PSO) 是一种基于群体智能的优化算法,由Kennedy和Eberhart于1995年提出。PSO算法模拟鸟群的觅食行为,将每个潜在的解视为搜索空间中的一个粒子。每个粒子都具有位置和速度两个属性,位置代表当前解,速度决定了粒子下一步的移动方向和距离。
在迭代过程中,每个粒子会根据自身的最佳位置 (pbest) 和整个群体的最佳位置 (gbest) 调整其速度和位置。粒子的速度更新公式如下:
scss
v_i(t+1) = w * v_i(t) + c_1 * rand() * (pbest_i - x_i(t)) + c_2 * rand() * (gbest - x_i(t))
其中,v_i(t+1) 表示粒子i在t+1时刻的速度,v_i(t) 表示粒子i在t时刻的速度,w 为惯性权重,c_1 和 c_2 为学习因子,rand() 为[0,1]之间的随机数,pbest_i 表示粒子i的历史最佳位置,gbest 表示整个群体的历史最佳位置,x_i(t) 表示粒子i在t时刻的位置。
粒子的位置更新公式如下:
scss
x_i(t+1) = x_i(t) + v_i(t+1)
PSO算法具有原理简单、易于实现、收敛速度快等优点。然而,PSO算法也存在容易陷入局部最优的缺点,尤其是在处理复杂的多峰问题时。
2.2 麻雀搜索算法 (SSA)
麻雀搜索算法 (Sparrow Search Algorithm, SSA) 是一种新型的群体智能优化算法,于2020年由Xue提出。SSA算法模拟麻雀群体的觅食和反捕食行为,将麻雀群体分为发现者、跟随者和预警者三种角色。
- 发现者 (Discoverer):
负责搜索食物,并为整个群体提供觅食方向。发现者具有更强的搜索能力,能够在更广阔的范围内寻找食物。
- 跟随者 (Follower):
跟随发现者寻找食物,或者争夺发现者的食物。跟随者跟随发现者的行动,能够利用发现者的经验提高觅食效率。
- 预警者 (Scouter):
负责监测周围环境,并在发现危险时发出警报。预警者的存在能够提高整个群体的安全性和生存能力。
在迭代过程中,发现者、跟随者和预警者根据各自的角色和位置,按照特定的规则进行更新。SSA算法融合了多种搜索策略,能够有效地平衡全局搜索和局部搜索能力。SSA算法具有收敛速度快、寻优精度高、鲁棒性强等优点。
2.3 灰狼优化 (GWO)
灰狼优化算法 (Grey Wolf Optimizer, GWO) 是一种模拟灰狼群体狩猎行为的智能优化算法,由Mirjalili等人于2014年提出。GWO算法将灰狼群体分为四种等级:Alpha (α)、Beta (β)、Delta (δ) 和 Omega (ω)。
- Alpha (α):
狼群的领导者,负责做出决策,并带领狼群进行狩猎。
- Beta (β):
协助Alpha进行决策,并对狼群的行动进行指导。
- Delta (δ):
服从Alpha和Beta的命令,负责侦察、警戒和照顾幼狼。
- Omega (ω):
狼群中的普通成员,服从所有其他狼的命令。
在狩猎过程中,Alpha、Beta和Delta狼引导整个狼群向猎物靠近。狼群通过以下公式更新位置:
scss
D = |C * X_p(t) - X(t)|
X(t+1) = X_p(t) - A * D
其中,X(t) 表示当前灰狼的位置,X_p(t) 表示猎物的位置,A 和 C 为系数向量,A 和 C 的计算公式如下:
ini
A = 2 * a * r_1 - a
C = 2 * r_2
其中,a 从2线性递减到0,r_1 和 r_2 为[0,1]之间的随机数。
GWO算法具有参数少、易于实现、全局搜索能力强等优点。GWO算法在处理复杂优化问题时,能够有效地避免陷入局部最优。
3 智能算法在PID参数整定中的应用
3.1 基于PSO的PID参数整定
将PSO算法应用于PID参数整定的关键是将PID参数作为粒子的位置,并将控制系统的性能指标作为适应度函数。适应度函数通常包括误差积分 (ISE)、时间乘以绝对误差积分 (ITAE)、时间乘以平方误差积分 (ITSE) 等。PSO算法通过迭代搜索,寻找使适应度函数最小的PID参数组合,从而实现对控制系统的优化。
基于PSO的PID参数整定流程如下:
- 初始化粒子群:
随机生成一组PID参数作为粒子的初始位置。
- 计算适应度值:
将每个粒子的PID参数应用于控制系统,并计算相应的适应度值。
- 更新pbest和gbest:
将每个粒子的当前位置与pbest进行比较,如果当前位置的适应度值更优,则更新pbest。将所有粒子的pbest与gbest进行比较,如果某个粒子的pbest的适应度值更优,则更新gbest。
- 更新粒子速度和位置:
根据公式更新每个粒子的速度和位置。
- 判断是否满足终止条件:
如果满足终止条件 (例如达到最大迭代次数或满足预设的性能指标),则输出最优PID参数,否则返回步骤2。
3.2 基于SSA的PID参数整定
与PSO类似,将SSA算法应用于PID参数整定也需要将PID参数作为麻雀的位置,并将控制系统的性能指标作为适应度函数。SSA算法通过模拟麻雀的觅食和反捕食行为,在搜索空间中寻找最优PID参数组合。
基于SSA的PID参数整定流程如下:
- 初始化麻雀群体:
随机生成一组PID参数作为麻雀的初始位置,并设置发现者、跟随者和预警者的比例。
- 计算适应度值:
将每个麻雀的PID参数应用于控制系统,并计算相应的适应度值。
- 更新发现者位置:
根据发现者规则更新发现者的位置。
- 更新跟随者位置:
根据跟随者规则更新跟随者的位置。
- 更新预警者位置:
根据预警者规则更新预警者的位置。
- 判断是否满足终止条件:
如果满足终止条件,则输出最优PID参数,否则返回步骤2。
3.3 基于GWO的PID参数整定
将GWO算法应用于PID参数整定,同样需要将PID参数作为灰狼的位置,并将控制系统的性能指标作为适应度函数。GWO算法通过模拟灰狼群体的狩猎行为,在搜索空间中寻找最优PID参数组合。
基于GWO的PID参数整定流程如下:
- 初始化灰狼群体:
随机生成一组PID参数作为灰狼的初始位置,并随机分配Alpha、Beta、Delta和Omega。
- 计算适应度值:
将每个灰狼的PID参数应用于控制系统,并计算相应的适应度值。
- 更新Alpha、Beta和Delta狼的位置:
根据狩猎规则更新Alpha、Beta和Delta狼的位置。
- 更新Omega狼的位置:
根据Alpha、Beta和Delta狼的位置更新Omega狼的位置。
- 判断是否满足终止条件:
如果满足终止条件,则输出最优PID参数,否则返回步骤2。
4 算法比较与分析
PSO、SSA和GWO三种智能算法在PID参数整定中都表现出良好的优化性能。然而,每种算法都有其独特的优势和局限性。
- PSO:
算法原理简单,易于实现,收敛速度快。但是,容易陷入局部最优,尤其是在处理复杂的多峰问题时。可以通过改进PSO算法,例如引入混沌初始化、自适应惯性权重等方法,来提高其全局搜索能力。
- SSA:
算法融合了多种搜索策略,能够有效地平衡全局搜索和局部搜索能力。收敛速度快,寻优精度高,鲁棒性强。但是,SSA算法相对于PSO和GWO算法来说,提出时间较短,相关的研究成果还比较有限。
- GWO:
算法参数少,易于实现,全局搜索能力强。在处理复杂优化问题时,能够有效地避免陷入局部最优。但是,GWO算法在迭代后期,可能会出现种群多样性降低的问题,导致收敛速度变慢。
选择合适的智能优化算法取决于具体的控制系统和性能指标。在实际应用中,可以根据控制系统的特点和性能要求,选择合适的智能优化算法或将多种算法结合使用,以获得更好的控制性能。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇