【SLAM】基于扩展卡尔曼滤波器同步定位与建图 (EKF-SLAM) 算法估计机器人的状态附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

EKF-SLAM 算法原理

扩展卡尔曼滤波器(EKF)是卡尔曼滤波器(KF)在非线性系统中的扩展。在 SLAM 问题中,机器人的运动和传感器测量通常是非线性的,EKF 通过对非线性函数进行一阶泰勒展开近似线性化,从而能够处理这些非线性问题。

在 EKF-SLAM 算法中,机器人的状态不仅包括自身的位姿(位置和姿态),还包括环境地图中特征点的位置。状态向量通常表示为:

  1. 预测阶段

    :根据机器人的运动模型,预测下一时刻机器人的状态和协方差。运动模型通常基于机器人的控制输入(如轮子的转速、电机的扭矩等)来估计机器人的位姿变化。对于地图特征点,它们的状态也会根据机器人的运动进行相应的预测。

  2. 更新阶段

    :当机器人接收到传感器测量(如激光雷达、视觉传感器等)时,将测量值与预测值进行比较,通过卡尔曼增益计算来更新机器人的状态和协方差。如果测量到新的地图特征点,则将其添加到状态向量中,并更新相应的协方差矩阵。

算法实现步骤

  1. 初始化

    :设定机器人的初始状态和协方差矩阵,初始化地图为空。

  2. 运动预测

    :根据机器人的控制输入和运动模型,预测机器人下一时刻的位姿变化,同时更新地图特征点的位置预测值,以及状态向量的协方差矩阵。

  3. 测量更新

    :获取传感器测量数据,将测量值与预测值进行匹配。对于已有的地图特征点,计算测量值与预测值之间的误差,并通过卡尔曼增益更新状态向量和协方差矩阵。对于新发现的地图特征点,将其添加到状态向量中,并初始化其协方差。

  4. 重复

    :不断重复运动预测和测量更新步骤,随着机器人的移动和传感器数据的积累,逐渐构建出准确的地图,并估计出机器人的状态。

优势

  1. 理论完整性

    :EKF-SLAM 基于严格的数学理论,提供了一种系统的方法来处理机器人的定位和地图构建问题。

  2. 实时性

    :在一些简单场景和计算资源有限的情况下,能够实现实时的 SLAM,满足机器人实时导航和操作的需求。

  3. 可扩展性

    :可以方便地扩展到不同类型的传感器和机器人平台,只要能够建立合适的运动模型和测量模型。

局限性

  1. 线性化误差

    :EKF 通过对非线性函数进行线性化近似,在非线性程度较高的情况下,线性化误差可能导致估计结果不准确,甚至滤波器发散。

  2. 计算复杂度高

    :随着地图中特征点数量的增加,状态向量的维度会迅速增大,导致协方差矩阵的计算和存储开销增大,计算效率降低。

  3. 数据关联问题

    :在测量更新阶段,准确地将传感器测量值与地图中的特征点进行匹配是一个挑战,错误的数据关联可能导致地图构建和定位的错误。

基于 EKF-SLAM 算法在机器人状态估计和地图构建方面具有一定的优势,但也存在一些局限性。在实际应用中,需要根据具体的场景和需求,对算法进行改进和优化,以提高 SLAM 系统的性能

⛳️ 运行结果

🔗 参考文献

[1] 康叶伟,黄亚楼,孙凤池,等.一种基于RBUKF滤波器的SLAM算法[J].计算机工程, 2008, 34(1):4.DOI:10.3969/j.issn.1000-3428.2008.01.006.

[2] 童林.基于粒子滤波器的移动机器人同步定位与地图构建研究[D].合肥工业大学,2009.DOI:CNKI:CDMD:2.2009.155896.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值