深度学习工艺参数优化+酷炫相关性气泡图!CNN卷积神经网络+NSGAII多目标优化算法(Matlab完整源码)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在智能制造、化工生产等领域,工艺参数的精准优化直接影响产品质量、生产效率与资源利用率。传统优化方法在面对复杂的多目标、非线性工艺参数优化问题时,往往力不从心。而将 CNN 卷积神经网络与 NSGAII 多目标优化算法相结合,为工艺参数优化开辟了全新路径。同时,借助酷炫的相关性气泡图,能更直观地展现参数与目标之间的复杂关系,助力深入理解优化过程。

一、工艺参数优化:挑战与机遇

工艺参数优化旨在通过调整生产过程中的各类参数,如温度、压力、时间、原料配比等,实现产品质量提升、生产成本降低、生产效率提高等多个目标。然而,实际生产中的工艺参数优化面临诸多挑战:工艺系统通常具有高度非线性,参数之间相互关联、相互影响;优化目标往往是多个且相互冲突,例如提高生产效率可能会导致产品质量下降;此外,大规模的参数搜索空间也使得传统优化算法难以在可接受的时间内找到最优解。深度学习的发展为解决这些难题带来了希望,特别是 CNN 与 NSGAII 的结合,为工艺参数优化提供了强大的技术支持。

二、核心技术原理详解

2.1 CNN 卷积神经网络

CNN 是一种专门为处理具有网格结构数据(如图像、时间序列)而设计的深度学习模型,其核心组件包括卷积层、池化层和全连接层。卷积层通过卷积核在数据上滑动,自动提取数据的局部特征,不同的卷积核可以捕捉不同类型的模式;池化层用于降低数据维度,减少计算量,同时保留主要特征;全连接层将提取到的特征进行整合,输出最终结果。在工艺参数优化中,CNN 可以将工艺参数数据作为输入,通过多层卷积和池化操作,学习到参数与生产结果之间的复杂映射关系,从而实现对生产过程的建模和预测。

2.2 NSGAII 多目标优化算法

NSGAII(非支配排序遗传算法 II)是一种基于种群进化的多目标优化算法。它模拟生物进化过程中的选择、交叉和变异操作,通过不断迭代进化种群,逐步逼近帕累托前沿(即所有非支配解的集合)。NSGAII 引入了快速非支配排序算法和拥挤度计算机制,快速非支配排序算法将种群中的个体按照支配关系分层,优先选择更优层级的个体;拥挤度计算则保证了种群的多样性,避免算法陷入局部最优。在工艺参数优化中,NSGAII 可以同时优化多个相互冲突的目标,如在提高产品质量的同时降低生产成本,找到一组满足不同需求的最优工艺参数组合。

三、CNN 与 NSGAII 的协同优化流程

3.1 数据收集与预处理

首先,收集大量的工艺参数数据以及对应的生产结果数据,这些数据可以来自实际生产过程记录或模拟实验。然后对数据进行预处理,包括数据清洗、归一化等操作,以确保数据的质量和一致性,为后续的模型训练做准备。

3.2 CNN 模型训练

将预处理后的数据划分为训练集、验证集和测试集。使用训练集对 CNN 模型进行训练,通过反向传播算法不断调整模型的参数,使得模型在验证集上的预测误差最小。训练完成后,使用测试集评估模型的泛化能力,确保模型能够准确地预测不同工艺参数下的生产结果。

3.3 NSGAII 优化过程

将训练好的 CNN 模型作为目标函数的评估工具。NSGAII 算法初始化一个工艺参数种群,对于种群中的每个个体(即一组工艺参数组合),通过 CNN 模型预测对应的生产结果,根据多个优化目标计算个体的适应度值。然后,通过选择、交叉和变异操作生成新一代种群,重复上述过程,直到满足终止条件(如达到最大迭代次数或种群收敛),最终得到一组帕累托最优解。

四、酷炫相关性气泡图:直观展现参数关系

为了更直观地展示工艺参数与优化目标之间的关系,以及不同参数之间的相互影响,我们可以绘制相关性气泡图。在气泡图中,每个气泡代表一个工艺参数或优化目标,气泡的位置反映参数与目标之间的相关性,气泡的大小可以表示参数的重要程度或影响范围。例如,通过气泡图可以清晰地看到温度参数与产品质量呈正相关,且对产品质量的影响较大;而压力参数与生产成本呈负相关等。这种可视化方式不仅有助于理解工艺参数优化的内在机制,还能为决策提供直观的依据。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值