✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本研究聚焦无人机集群三维路径规划难题,提出基于 circle 序列和正余弦策略改进的 APO 猎人算法与 CO 鸡群算法。以猎人狩猎协作和鸡群觅食行为为灵感,结合 circle 序列构建路径框架,运用正余弦策略优化搜索过程。通过搭建三维环境模型、设定多目标函数,对改进算法进行设计与实现。仿真实验表明,该算法在路径长度、收敛速度及规划成功率上优于传统算法,为无人机集群在复杂三维环境中的高效路径规划提供了创新解决方案。
关键词
无人机集群;三维路径规划;circle 序列;正余弦策略;APO 猎人算法;CO 鸡群算法
一、引言
1.1 研究背景
无人机集群凭借其强大的协同作业能力,在军事、民用等多领域应用愈发广泛。在三维空间执行任务时,如穿越复杂地形、城市高空作业等,传统路径规划算法难以满足无人机集群高效、安全飞行需求。APO 猎人算法与 CO 鸡群算法作为新兴智能优化算法,为路径规划提供了新思路,结合 circle 序列和正余弦策略对其改进,有望突破现有技术瓶颈,提升无人机集群路径规划性能。
1.2 研究现状
当前,多种智能算法应用于无人机路径规划,但在三维环境下,算法的全局搜索能力与避障效率仍有待提高。APO 猎人算法模拟猎人团队协作狩猎过程,CO 鸡群算法借鉴鸡群觅食行为,二者在优化问题上展现一定潜力,但在无人机集群三维路径规划中应用较少,且存在收敛速度慢、路径规划质量不高等问题。circle 序列和正余弦策略在优化算法改进方面已有成功案例,将其引入上述两种算法,具有重要研究价值。
1.3 研究内容与目标
本研究旨在将 circle 序列和正余弦策略融入 APO 猎人算法与 CO 鸡群算法,实现无人机集群三维路径规划优化。主要内容包括构建三维环境模型与路径框架、改进 APO 猎人算法和 CO 鸡群算法、设计仿真实验验证算法性能。目标是提高路径规划效率,降低路径长度,增强算法鲁棒性,使无人机集群在复杂三维环境中实现安全、高效飞行。
二、无人机集群三维路径规划问题建模
2.1 三维环境建模
采用三维栅格法对无人机集群飞行环境建模,将空间划分为大小一致的立方体栅格。依据实际地形、建筑物等信息,标记障碍物栅格与自由栅格。为每个栅格赋予三维坐标
(x,y,z)
,建立精确的环境数字模型,为无人机集群路径规划提供基础场景。
2.2 基于 circle 序列的路径框架构建
以无人机集群起始位置为中心,按照 circle 序列规则,在三维空间生成一系列目标点。根据任务需求设定半径变化、角度间隔等参数,形成螺旋式或环形路径框架。该框架为无人机集群提供初始飞行方向指引,同时便于后续路径优化调整,确保路径的有序性与覆盖性。
2.3 目标函数设定
构建多目标优化函数以满足无人机集群路径规划需求:
- 路径长度最小化:计算相邻路径点三维空间距离之和
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇