✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
柴油机作为一种重要的动力设备,在工业、农业、交通运输等众多领域都有着极为广泛的应用。从日常穿梭于城市间的公交、物流运输的重型卡车,到田野里高效作业的农业机械,再到远洋航行的巨轮以及建筑工地的大型工程机械,柴油机凭借其高扭矩、高效率、经济性好和可靠性强等优势,成为这些设备的核心动力来源,在全球能源动力体系中占据着举足轻重的地位。
随着科技的飞速发展和市场需求的不断升级,对柴油机性能的要求也日益严苛。一方面,为了应对能源危机和环境污染问题,柴油机需要在提高燃油经济性的同时,降低有害气体的排放;另一方面,在工业生产和交通运输等领域,也期望柴油机能够提供更强劲、更稳定的动力输出,以满足日益增长的作业强度和运行速度需求。
在这样的背景下,柴油机性能建模与仿真技术应运而生,成为柴油机研究、开发和优化过程中不可或缺的关键手段。通过构建精确的数学模型来模拟柴油机的工作过程,包括气缸内的气体流动、压缩与燃烧、排气系统的气体排放、曲轴的运动以及燃油供给系统的工作等,研究人员能够深入了解柴油机内部复杂的物理现象和工作机制。同时,借助计算机仿真技术,能够在虚拟环境中对各种设计方案和运行工况进行快速、高效的评估和分析,从而预测柴油机的性能表现,找出潜在的问题和优化方向。这不仅可以大幅缩短柴油机的研发周期、降低研发成本,还能显著提高柴油机的性能和质量,使其更好地满足市场需求和环保要求。因此,深入研究柴油机性能建模与仿真技术具有极其重要的现实意义和广阔的应用前景 。
气缸模型:柴油机的 “动力心脏”
气缸,作为柴油机的 “动力心脏”,在整个柴油机的运行过程中扮演着核心角色,是实现能量转换的关键部件 。从结构上看,气缸主要由缸筒、端盖、活塞、活塞杆和密封件等部分组成。缸筒作为气缸的主体,其内径大小直接决定了气缸输出力的大小,活塞在缸筒内做平稳的往复直线运动,实现对气体的压缩与释放。端盖上设有进排气通口,负责新鲜空气的吸入和燃烧后废气的排出,部分端盖内还设有缓冲机构,以减少活塞运动到行程终点时的冲击。活塞与活塞杆相连,将燃烧产生的压力转化为直线运动,进而通过连杆带动曲轴旋转输出动力,而密封件则起着至关重要的密封作用,防止气体泄漏,确保气缸内的压力稳定,维持柴油机的高效运行。
对气缸进行建模,是深入研究柴油机性能的重要手段。在建模过程中,需要对气缸的结构和工作过程进行精确的数学描述。以活塞运动为例,可通过建立运动学方程来描述其位移、速度和加速度随时间或曲轴转角的变化关系。在气体状态变化方面,基于热力学基本定律,如理想气体状态方程 PV = mRT(其中 P 为气体压力,V 为气体体积,m 为气体质量,R 为气体常数,T 为气体温度),以及能量守恒方程和质量守恒方程,来刻画气缸内气体在压缩、燃烧和膨胀过程中的压力、温度、体积等参数的动态变化。
例如,在压缩过程中,随着活塞向上运动,气缸内气体体积逐渐减小,压力和温度不断升高,可利用上述方程结合活塞运动规律,计算出不同时刻的气体状态参数;在燃烧过程中,燃油与空气混合燃烧释放大量热能,使气缸内气体温度和压力急剧上升,此时需考虑燃烧放热率、化学反应动力学等因素,对能量方程进行修正,以准确模拟燃烧过程中气体状态的变化;在膨胀过程中,高温高压气体推动活塞向下运动对外做功,气体体积增大,压力和温度降低,同样依据相关方程来描述这一过程中气体状态的演变。
气缸模型在分析气缸性能方面具有不可替代的应用和意义。通过该模型,研究人员能够直观地观察到气缸内气体的流动特性、压力分布和温度场变化,深入了解气缸工作过程中的各种物理现象和内在机制。基于模型的计算结果,可以对气缸的结构参数进行优化设计,如调整缸径、冲程、压缩比等,以提高气缸的充气效率、燃烧效率和动力输出性能。气缸模型还可用于评估不同运行工况下气缸的性能表现,预测柴油机在各种实际工作条件下的运行状态,为柴油机的调试、故障诊断和维护保养提供有力的理论依据,有助于提高柴油机的可靠性和耐久性,降低运行成本。
压缩与燃烧过程:能量转化的核心
压缩与燃烧过程是柴油机实现热能向机械能转化的核心环节,对柴油机的性能起着决定性作用。在进气冲程结束后,活塞开始向上运动,进入压缩冲程,此时气缸内的空气被逐渐压缩,体积不断减小,压力和温度急剧升高。这一过程遵循热力学中的绝热压缩原理,根据理想气体状态方程和热力学第一定律,空气的压力与体积的 γ 次方成反比(γ 为绝热指数,对于空气约为 1.4),随着体积的减小,压力迅速上升,温度也相应升高 。当活塞接近上止点时,气缸内空气的压力可达 3 - 5MPa,温度可升至 500 - 700℃,远远超过柴油的自燃点。
紧接着,喷油器将柴油以高压雾状喷入气缸,燃油迅速与高温高压的空气混合,形成可燃混合气。由于此时气缸内的温度和压力条件满足柴油的自燃要求,混合气迅速自燃着火,进入燃烧阶段。柴油机的燃烧过程较为复杂,通常可分为滞燃期、速燃期、缓燃期和后燃期四个阶段 。
滞燃期是指从喷油开始到混合气着火的这段时间,在滞燃期内,燃油经历了雾化、蒸发、扩散以及与空气混合等一系列物理准备过程,同时还进行着缓慢的氧化反应,为燃烧做化学准备 。滞燃期的长短对后续燃烧过程的稳定性和柴油机的性能有着重要影响,一般来说,滞燃期越短,柴油机的燃烧越平稳,工作越柔和;滞燃期过长,则会导致在速燃期内大量可燃混合气同时燃烧,使气缸内压力急剧上升,产生强烈的燃烧敲缸现象,不仅会降低柴油机的动力性能和燃油经济性,还会加剧零部件的磨损,影响柴油机的可靠性和耐久性 。
速燃期是从着火点到气缸内出现最高压力的阶段,在这一阶段,滞燃期内形成的可燃混合气迅速燃烧,火焰迅速传播,气缸内压力急剧上升,达到最高爆发压力 。速燃期的燃烧近乎在等容状态下进行,由于燃烧速度极快,压力增长率很高,对柴油机的机械负荷和热负荷产生较大影响 。因此,控制速燃期的燃烧强度和压力增长率是优化柴油机燃烧过程的关键之一,通常可以通过合理调整喷油提前角、改善燃油雾化质量和优化混合气形成等措施来实现 。
缓燃期是从最高压力点到出现最高温度的阶段,此时燃烧室内已充满燃烧产物和正在燃烧的火焰,燃油油滴喷入气缸后即行蒸发燃烧 。但由于活塞已下行,气缸容积迅速扩大,燃烧过程近似于等压燃烧,燃烧速度主要取决于燃油分子与氧分子的混合速度 。缓燃期的主要矛盾是油气得到氧分子的速度赶不上燃烧速度的需要,容易发生不完全燃烧,导致燃油经济性下降和排放恶化 。为了提高缓燃期的燃烧效率,需要加强燃烧室内的空气运动,促进油气混合,确保燃油能够充分燃烧 。
后燃期是指燃烧过程在膨胀行程中的继续,由于在缓燃期内难免有一部分燃油因遇不到足够的氧分子而来不及燃烧或燃烧不完全,以及部分燃烧产物在高温下发生逆化学反应,这些未燃烧的燃油和反应产物只能在活塞下行、气缸内温度下降后才能重新进行燃烧 。后燃期的存在使排气温度升高,柴油机机件的热负荷增加,同时也降低了燃油的热效率 。因此,应尽量缩短后燃期,可通过优化喷油规律、改善燃烧室内的空气流动和提高燃油雾化质量等方法来实现 。
在对压缩与燃烧过程进行建模时,需要综合考虑多种物理和化学过程,运用相关的数学模型来描述这些过程。例如,对于燃油喷雾过程,可采用离散液滴模型(DDM)或拉格朗日方法来追踪油滴的运动轨迹、破碎、蒸发和与空气的混合过程;对于燃烧反应,可使用详细的化学反应动力学模型或简化的燃烧模型来描述可燃混合气的着火、燃烧和火焰传播过程;在考虑气体流动时,通常基于计算流体力学(CFD)理论,采用雷诺平均 Navier - Stokes(RANS)方程或大涡模拟(LES)方法来求解气缸内的流场 。
通过仿真,可以深入理解压缩与燃烧过程中的各种物理现象和内在机制,预测不同工况下柴油机的燃烧性能,为柴油机的优化设计提供有力依据 。例如,通过改变喷油提前角、喷油压力、喷孔直径等参数进行仿真分析,可以研究这些参数对燃烧过程和柴油机性能的影响规律,从而找到最佳的参数组合,提高柴油机的动力性、经济性和排放性能 。仿真还可以帮助研究人员发现潜在的问题,如燃烧不充分、局部过热等,并提出相应的改进措施,从而缩短柴油机的研发周期,降低研发成本 。
排气系统模型:“废气” 处理之道
排气系统作为柴油机的重要组成部分,对柴油机的性能和环境影响起着举足轻重的作用 。其主要功能是将气缸内燃烧产生的高温高压废气安全、高效地排出柴油机,同时降低排气噪音和控制有害气体排放,以满足环保法规要求。
排气系统的工作过程较为复杂,从气缸排出的废气首先进入排气歧管,排气歧管将各气缸的废气汇集起来,然后通过排气管输送到后续的处理装置 。在这个过程中,废气的流动特性、压力损失和热量传递等因素都会对柴油机的性能产生显著影响 。例如,若排气系统的流动阻力过大,会导致气缸内排气背压升高,使废气排出不畅,进而影响柴油机的充气效率和燃烧过程,降低柴油机的动力性能和燃油经济性 ;同时,高温废气在排气系统中流动时,会与周围环境进行热量交换,若热量不能及时散发,会使排气系统部件温度过高,影响其可靠性和使用寿命 。
在对排气系统进行建模时,需要重点考虑气体流动和热传递的模拟 。对于气体流动,可基于计算流体力学(CFD)理论,采用合适的数值方法来求解气体的流动方程,如雷诺平均 Navier - Stokes(RANS)方程或大涡模拟(LES)方法 。通过这些方法,可以准确地计算出排气系统内气体的流速、压力分布和流量等参数,深入了解气体的流动特性和流场结构 。在热传递模拟方面,需要考虑废气与排气系统壁面之间的对流换热、辐射换热以及排气系统内部的热传导等因素 。通常采用传热学的基本原理和相关的经验公式来建立热传递模型,计算排气系统内各部件的温度分布和热量传递速率 。
以某型号柴油机排气系统建模为例,研究人员首先利用三维建模软件建立了排气系统的几何模型,包括排气歧管、排气管、消声器和催化转化器等部件 。然后将几何模型导入 CFD 软件中,对排气系统内的气体流动和热传递进行数值模拟 。在模拟过程中,采用了 RANS 方程结合 k - ε 湍流模型来描述气体的湍流流动,同时考虑了废气与壁面之间的对流换热和辐射换热 。通过模拟计算,得到了排气系统内不同位置的气体流速、压力分布和温度分布等结果 。
仿真在优化排气系统设计方面具有广泛的应用 。通过对不同设计方案的仿真分析,可以快速评估各种结构参数和运行参数对排气系统性能的影响,从而找到最优的设计方案 。例如,通过改变排气歧管的长度、管径和形状,以及排气管的走向和布局等参数进行仿真,可以研究这些参数对排气阻力、压力波动和气体混合均匀性的影响,进而优化排气系统的结构,降低排气阻力,提高排气效率 。仿真还可以用于评估不同的排气后处理装置(如催化转化器、颗粒捕集器等)的性能,为选择合适的后处理技术和优化其结构提供依据 。在实际应用中,某柴油机研发团队通过对排气系统的仿真优化,将排气阻力降低了 15%,使柴油机的动力性能提高了 8%,同时有效降低了有害气体的排放,满足了更严格的环保标准 。
曲轴和机械损失:动力传输的关键环节
曲轴作为柴油机的关键部件,在动力传输过程中扮演着举足轻重的角色,其主要功能是将活塞连杆组传来的往复直线运动转换为旋转运动,并将动力输出,以驱动各种机械设备。曲轴通常由主轴颈、连杆轴颈、曲柄、平衡块等部分组成。主轴颈是曲轴的支撑部分,安装在机体的主轴承内,为曲轴的旋转提供稳定的支撑;连杆轴颈与连杆大头相连,接受连杆传来的力;曲柄则连接主轴颈和连杆轴颈,其长度决定了曲轴的冲程;平衡块用于平衡曲轴旋转时产生的离心力,减少振动和噪声,保证柴油机的平稳运行 。
在柴油机工作过程中,曲轴承受着来自活塞连杆组的气体压力、惯性力以及摩擦力等多种复杂载荷的作用。这些载荷不仅会使曲轴产生弯曲、扭转和剪切等应力,还会导致曲轴的疲劳损伤和磨损。因此,对曲轴进行动力学建模至关重要,通过建立曲轴动力学模型,可以准确地模拟曲轴在不同工况下的受力情况和运动状态,为曲轴的设计、优化和可靠性分析提供重要依据 。
曲轴动力学建模通常基于多体动力学理论,将曲轴视为一个由多个刚体或柔性体组成的系统,考虑各部件之间的相互作用力和运动关系。在建模过程中,需要确定曲轴的几何形状、材料特性、质量分布等参数,并建立各部件之间的连接关系和约束条件 。例如,通过定义主轴颈与主轴承之间的径向间隙和轴向间隙,以及连杆轴颈与连杆大头之间的配合关系,来模拟实际的运动副。同时,还需要考虑活塞连杆组对曲轴的作用力,包括气体压力、惯性力和摩擦力等,这些力可以通过气缸模型和活塞运动方程计算得到 。
机械损失是指柴油机在工作过程中,由于各运动部件之间的摩擦、驱动附属设备等原因而消耗的能量。机械损失主要包括活塞连杆组的摩擦损失、配气机构的摩擦损失、曲轴轴承的摩擦损失以及驱动油泵、水泵、发电机等附属设备所消耗的功率 。准确计算机械损失对于评估柴油机的性能和效率具有重要意义,它直接影响到柴油机的燃油经济性和动力输出 。
计算机械损失的方法有多种,常见的包括经验公式法、试验测量法和数值模拟法 。经验公式法是根据大量的试验数据和工程经验,建立机械损失与柴油机转速、负荷、结构参数等因素之间的经验关系式,这种方法计算简单,但精度相对较低,适用于初步估算 。试验测量法是通过在柴油机上安装各种传感器,直接测量各部件的摩擦力、驱动力等参数,进而计算出机械损失,这种方法精度较高,但试验成本高、周期长,且受到试验条件的限制 。数值模拟法是利用计算机仿真技术,通过建立柴油机的多体动力学模型和摩擦模型,对机械损失进行数值计算,这种方法可以全面考虑各种因素的影响,能够得到较为准确的结果,并且可以方便地对不同工况和设计方案进行分析比较 。
以某型号柴油机为例,在计算机械损失时,研究人员首先利用多体动力学软件建立了包含活塞连杆组、曲轴、配气机构等部件的详细动力学模型。在模型中,考虑了各部件之间的接触摩擦,采用库仑摩擦模型来描述活塞与气缸壁、曲轴轴承等部位的摩擦特性 。通过对不同转速和负荷工况下的仿真计算,得到了各部件的摩擦功率损失和机械损失的分布情况 。结果表明,在该柴油机中,活塞连杆组的摩擦损失占机械损失的比例最大,约为 50% - 60%,其次是曲轴轴承的摩擦损失,约占 20% - 30% 。
曲轴动力学模型和机械损失计算在分析柴油机动力传输效率方面具有重要的应用和意义 。通过对曲轴动力学模型的仿真分析,可以深入了解曲轴的受力和变形情况,优化曲轴的结构设计,提高其强度和刚度,减少振动和噪声,从而提高动力传输的稳定性和可靠性 。同时,通过准确计算机械损失,可以找出影响柴油机效率的主要因素,采取相应的措施降低机械损失,如优化润滑系统、改进摩擦副材料和表面处理工艺等,从而提高柴油机的动力传输效率和燃油经济性 。在实际应用中,某柴油机通过对曲轴结构的优化和机械损失的降低,动力传输效率提高了 5%,燃油消耗率降低了 8%,取得了显著的经济效益和环保效益 。
燃油供给系统:精准 “供油” 的保障
燃油供给系统堪称柴油机的 “血液输送网络”,对柴油机性能的重要性不言而喻。它承担着储存、输送、滤清燃油以及精确控制燃油喷射量和喷射时机的关键任务,其性能的优劣直接关乎柴油机的动力输出、燃油经济性以及排放水平 。例如,当燃油供给系统的喷油器出现故障,导致喷油雾化效果不佳时,燃油无法与空气充分混合,会使燃烧过程不充分,不仅降低了柴油机的功率输出,还会显著增加燃油消耗和污染物排放 。据相关研究表明,在相同工况下,喷油雾化不良的柴油机燃油消耗率可提高 10% - 20%,氮氧化物(NOx)和颗粒物(PM)等污染物排放也会大幅上升 。
在对燃油供给系统进行建模时,重点在于对燃油喷射和计量过程的精确模拟 。以高压共轨燃油供给系统为例,喷油过程涉及到复杂的流体力学和瞬态变化,建模时需要考虑喷油压力、喷油嘴结构、喷孔数量和直径等因素对燃油喷射特性的影响 。通过建立喷油嘴的流体动力学模型,可以准确地计算出燃油在喷孔内的流动速度、压力分布以及喷射流量随时间的变化关系 。在计量方面,需要模拟燃油计量阀的工作特性,根据柴油机的运行工况和控制信号,精确计算燃油的供给量 。同时,还需考虑燃油的可压缩性、粘性以及温度对其物理性质的影响,以提高模型的准确性 。
以某型号船用柴油机燃油供给系统建模为例,研究人员运用专业的建模软件,建立了包含燃油箱、输油泵、高压油泵、燃油共轨管、喷油器以及各种控制阀的详细模型 。在建模过程中,对高压油泵的柱塞运动、燃油在共轨管中的压力波动以及喷油器的针阀开启和关闭过程等进行了精确的数学描述 。通过设置不同的边界条件和初始参数,模拟了柴油机在不同工况下的燃油供给过程 。
仿真在优化燃油供给系统设计和运行方面发挥着至关重要的作用 。通过对不同喷油策略和燃油供给参数的仿真分析,可以深入研究这些因素对柴油机性能的影响规律,从而找到最佳的燃油供给方案 。例如,通过改变喷油提前角、喷油压力和喷油持续时间等参数进行仿真,可以研究这些参数对燃烧过程、动力性能、燃油经济性和排放性能的影响 。某柴油机研发团队通过仿真发现,将喷油提前角适当提前,可以使燃油在气缸内更早地与空气混合并燃烧,从而提高燃烧效率,降低燃油消耗和排放 。在实际应用中,该团队根据仿真结果对燃油供给系统进行了优化调整,使柴油机的燃油消耗率降低了 8%,氮氧化物排放降低了 15%,取得了显著的节能减排效果 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇