SHAP分析+BiLSTM神经网络+注意力机制,Matlab代码实现

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在机器学习与数据分析不断发展的当下,对于复杂数据的处理与解释愈发关键。此前我们介绍的 DTW-Kmeans-Transformer-GRU 模型在时序聚类与状态识别上表现出色,而 SHAP 分析、BiLSTM 神经网络与注意力机制的组合,从数据解释与特征提取的角度,为时序数据分析带来新的突破,助力我们更深入理解数据背后的规律。

一、核心技术原理

1.1 SHAP 分析

SHAP(SHapley Additive exPlanations)是一种基于博弈论的可解释性方法,旨在为机器学习模型的预测结果提供合理的解释。它通过计算每个特征对模型输出的贡献值,来衡量该特征的重要性。对于单个样本,SHAP 值表示当将某个特征加入到模型中时,预测结果的变化量。其核心思想基于 Shapley 值,确保了在所有可能的特征组合下,每个特征的贡献分配是公平合理的。在时序数据分析中,SHAP 分析能够帮助我们清晰地了解每个时间步的特征对最终预测结果的影响程度,从而发现数据中的关键因素。

1.2 BiLSTM 神经网络

BiLSTM(双向长短期记忆网络)是 LSTM(长短期记忆网络)的扩展。LSTM 通过门控机制解决了传统循环神经网络(RNN)中存在的梯度消失和梯度爆炸问题,能够有效处理长序列数据。而 BiLSTM 在此基础上,由前向 LSTM 和后向 LSTM 组成,前向 LSTM 按顺序处理输入序列,后向 LSTM 则逆序处理。这样,BiLSTM 能够同时利用过去和未来的信息,充分捕捉时序数据中的双向依赖关系,相比单向 LSTM,能学习到更丰富、全面的时序特征,在时序预测、情感分析等任务中表现优异。

1.3 注意力机制

注意力机制源于人类在观察事物时会选择性地关注重要部分的特性。在深度学习中,注意力机制通过计算输入序列中不同部分的权重,使得模型能够聚焦于对当前任务更重要的信息。在时序数据处理中,注意力机制可以根据任务需求,动态地分配每个时间步的权重,突出关键时间点的特征,抑制无关信息的干扰,从而增强模型对重要特征的提取能力,提升模型的性能和泛化能力 。

二、三者结合在时序数据中的应用

2.1 数据预处理与特征提取

首先对原始时序数据进行标准化、平滑等预处理操作,为后续模型训练奠定基础。将处理后的数据输入到 BiLSTM 神经网络中,BiLSTM 凭借其双向处理能力,从时序数据的前后两个方向提取丰富的特征,这些特征包含了数据在时间维度上的长期依赖关系和复杂模式。

2.2 注意力机制强化特征

在 BiLSTM 提取的特征基础上,引入注意力机制。通过计算不同时间步特征的注意力权重,模型能够动态地聚焦于对预测结果影响较大的关键时间步。例如在股票价格预测中,某些重大事件发生的时间点对应的特征往往对后续价格走势影响巨大,注意力机制可以赋予这些时间步更高的权重,使模型更精准地捕捉到这些关键信息,进一步优化特征表示。

2.3 SHAP 分析解释预测结果

训练完成的 BiLSTM - 注意力机制模型对时序数据进行预测后,利用 SHAP 分析对预测结果进行解释。通过计算每个特征(每个时间步的特征值)的 SHAP 值,我们可以直观地看到在某次预测中,哪些时间步的哪些特征对最终结果起到了关键作用,哪些特征的影响较小。这不仅有助于我们理解模型的决策过程,还能为后续的数据特征工程和模型优化提供有力依据。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

[1] 付玲,佘玲娟,颜镀镭,等.基于内嵌物理信息与注意力机制BiLSTM神经网络的臂架系统疲劳损伤预测模型[J].机械工程学报, 2024, 60(13):205-215.DOI:10.3901/JME.2024.13.205.

[2] 陈晓,杨瑶.融合注意力机制的BiLSTM网络实现无创血压测量[J].电子测量技术, 2022.

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
SHAP (SHapley Additive exPlanations) 是一种解释机器学习模型预测结果的方法,它基于Shapley价值原理。在MATLAB中,虽然不是内置函数,但你可以通过安装第三方库如`DeepExplain`、`mljar-contrib-matlab`等来实现SHAP分析。以下是一个简单的例子,假设你已经安装了`DeepExplain`: 首先,你需要导入所需的库: ```matlab addpath('DeepExplain'); % 如果没有添加,需要先安装并设置路径 import deepexplain.* ``` 然后,假设你的模型是`model`,输入数据集是`X`,你可以这样做来进行SHAP值计算: ```matlab % 加载数据 data = load('your_dataset.mat'); % 替换为实际数据文件 X = data.X; % 假设X是输入特征矩阵 % 创建一个DeepExplain实例 explainer = shap.DeepExplainer(model, X); % 计算每个样本的SHAPshap_values = explainer.shapValues(X); ``` 接下来,可以使用`deepexplain.plot.bar`或`deepexplain.plot.image`绘制SHAP值热力图,这里以图像为例: ```matlab % 绘制单个样本的SHAP值 figure; image(shap_values(1,:,:)); % 第一个样本 title('SHAP Values for Sample 1'); xlabel('Feature Index'); ylabel('Sample Index'); % 或者绘制整体分布 figure; bar(shap_values); % 横轴为特征,纵轴为SHAP值平均值 legend('SHAP Value', 'Mean Absolute SHAP Value'); title('SHAP Summary Plot'); ``` 注意:在运行上述代码前,确保你的模型`model`已经被训练并且能够对`X`进行预测。此外,由于MATLAB中的SHAP支持还在发展中,具体的函数可能会有变动,所以请查阅最新的文档或教程以获取最准确的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matlab科研助手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值