大语言模型常用微调与基于SFT微调DeepSeek R1指南

概述

大型语言模型(LLM,Large Language Model)的微调(Fine-tuning)是指在一个预训练模型的基础上,使用特定领域或任务的数据对模型进行进一步训练,以使其在该领域或任务上表现更好。微调是迁移学习的一种常见方法,能够显著提升模型在特定任务上的性能。在大型语言模型(LLM)的微调中,有几种常见的方法,包括 SFT(监督微调)LoRA(低秩适应)P-tuning v2 和 **Freeze

可以在这个地址白嫖满血版的deepseek:https://dazi.co/login?i=d788ca33

1.大语言模型微调

1.1 微调的工作原理

微调(Fine-tuning)是指在预训练模型的基础上,使用特定任务的标注数据对模型进行进一步训练,使其在该任务上表现更好。微调的核心思想是利用预训练模型已经学习到的通用语言表示,通过少量任务数据调整模型参数,使其适应特定任务。

微调的关键组件
  • 输入 (X)

    • 提供给模型的文本数据(例如,电影评论、问题、对话等)。
    • 对于文本生成任务,输入可能是一个问题或提示。
  • 目标 (Y)

    • 基于标注数据的预期输出(例如,情绪标签、聊天机器人响应、摘要文本等)。
    • 对于分类任务,目标可能是类别标签(如“积极”或“消极”)。
    • 对于生成任务,目标可能是完整的文本响应。
  • 损失函数

    • 衡量模型的预测与目标之间的差异。
    • 通过优化损失函数,模型逐渐调整参数以更好地拟合任务数据。
示例:IMDB 情绪分类
  • 输入 (X):电影评论,例如“这部电影的视觉效果很棒,但情节很弱。”
  • 目标 (Y):情绪标签,例如“积极”或“消极”。
  • 模型任务:根据输入文本预测正确的情绪标签。
示例:文本生成
  • 输入 (X):问题,例如“什么是人工智能?”
  • 目标 (Y):生成的响应,例如“人工智能是模拟人类智能的技术。”
  • 模型任务:根据输入问题生成正确的文本响应。

1.2 使用的损失函数:交叉熵损失

在语言模型的微调中,交叉熵损失(Cross-Entropy Loss) 是最常用的损失函数。它用于衡量模型预测的概率分布与真实目标分布之间的差异。

交叉熵损失的公式

对于语言模型,交叉熵损失的公式为:
Cross-Entropy Loss = − ∑ i = 1 N y i log ⁡ ( p i ) \text{Cross-Entropy Loss} = -\sum_{i=1}^{N} y_i \log(p_i) Cross-Entropy Loss=i=1Nyilog(pi)

其中:

  • y i y_i yi:目标分布(真实标签的 one-hot 编码)。
  • p i p_i pi:模型预测的概率分布。
  • N N N:词汇表的大小(对于分类任务,( N ) 是类别数)。

交叉熵损失的作用

  • 衡量预测与目标的差异
    • 当模型预测的概率分布与目标分布越接近时,交叉熵损失越小。
    • 当模型预测的概率分布与目标分布差异较大时,交叉熵损失越大。
  • 优化目标
    • 在训练过程中,通过反向传播和梯度下降,模型不断调整参数以最小化交叉熵损失。

示例:文本生成中的交叉熵损失

假设模型生成一个句子,每个词的概率分布如下:

  • 目标词:["I", "love", "AI"]
  • 模型预测的概率分布:
    • I: 0.9
    • love: 0.8
    • AI: 0.7

交叉熵损失计算如下:
t e x t L o s s = − ( log ⁡ ( 0.9 ) + log ⁡ ( 0.8 ) + log ⁡ ( 0.7 ) ) text{Loss} = -(\log(0.9) + \log(0.8) + \log(0.7))

### DeepSeek-R1大模型概述 DeepSeek-R1是一款由DeepSeek团队开发的大型语言模型,旨在增强推理能力解决实际问题。此模型不仅具备强大的推理功能,还特别优化了可读性表达清晰度[^3]。 #### 工作原理 DeepSeek-R1采用了多阶段训练策略,在强化学习前引入了监督微调(SFT),从而解决了R1-Zero版本中存在的语言混杂等问题。这种设计使得DeepSeek-R1能够更好地理解上下文语境,并生成更加连贯、合理的回应。 此外,为了提高效率降低资源消耗,官方提供了不同规模大小(如15亿至700亿参数)的蒸馏版模型供开发者选择使用[^4]。 ### 应用场景 由于其出色的推理能力,DeepSeek-R1适用于多种高级NLP任务: - **复杂文本处理**:包括但不限于文章创作、摘要提取等; - **编程辅助工具**:帮助程序员编写代码片段或是解释错误信息; - **跨语言交流平台**:作为机器翻译引擎的核心组件之一; - **智能客服系统**:为企业构建自动化的客户服务解决方案; 值得注意的是,除了上述典型用途外,任何涉及自然语言理解生成的应用程序都可以考虑集成DeepSeek-R1来提升用户体验服务质量[^1]。 ### 实现方法 对于希望在本地环境中测试或部署DeepSeek-R1的企业个人而言,Ollama提供了一套简便易行的操作指南。以下是具体步骤概览: 1. 安装并配置好Docker环境; 2. 使用`ollama pull`指令下载所需版本的DeepSeek-R1模型文件; 3. 利用`ollama run`命令启动指定型号的服务端口; 4. 通过HTTP API接口向服务器发送请求以获取响应结果。 例如,要运行具有8B参数量级的小型化变体,则可以执行如下Shell脚本: ```bash ollama pull deepseek-r1:8b ollama run deepseek-r1:8b ``` 这将使用户能够在个人计算机上轻松体验到接近云端级别的高性能计算服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

知来者逆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值