系列文章目录
摘要
卡尔曼滤波作为一种重要的技术,在许多领域得到广泛应用,本系列文章旨在梳理卡尔曼滤波相关知识点,用于知识结构整理,以便加深理解。作为系列文章的开篇,本文将整理卡尔曼滤波状态更新方程推导的知识。
一、卡尔曼滤波的基本数学模型
{ X ( k + 1 ) = Φ ( k ) X ( k ) + Γ ( k ) u ( k ) + G ( k ) V ( k ) Z ( k ) = H ( k ) X ( k ) + W ( k ) \left\{ \begin{aligned} X(k+1) &= \Phi(k)X(k) + \Gamma(k)u(k) + G(k)V(k) \\ Z(k) &= H(k)X(k) + W(k) \end{aligned} \right. {
X(k+1)Z(k)=Φ(k)X(k)+Γ(k)u(k)+G(k)V(k)=H(k)X(k)+W(k)
其中, k k k代表时刻, X ( k ) X(k) X(k)为状态值, Z ( k ) Z(k) Z(k)为量测值, Φ ( k ) \Phi(k) Φ(k)为状态转移矩阵, Γ ( k ) \Gamma(k) Γ(k)为输入矩阵, u ( k ) u(k) u(k)为输入的控制信号, G ( k ) G(k) G(k)为过程噪声分布矩阵, V ( k ) V(k) V(k)为过程噪声矩阵, H ( k ) H(k) H(k)为量测矩阵, W ( k ) W(k) W(k)为量测噪声。
为便于推导,做以下定义:
X ^ ( j / k ) = E [ X ( j ) / Z k ] X ~ ( j / k ) = X ( j ) − X ^ ( j / k ) Z ^ ( j / k ) = E [ Z ( j ) / Z k ] Z ~ ( j / k ) = Z ( j ) − Z ^ ( j / k ) , j ≥ k Z k = { Z ( i ) , i = 1 , ⋯ , k } \begin{aligned} &\hat{X}(j/k) = E\left[ X(j) / Z^k\right] \\ &\tilde{X}(j/k) = X(j) - \hat{X}(j/k) \\ &\hat{Z}(j/k) = E\left[ Z(j) / Z^k\right] \\ &\tilde{Z}(j/k) = Z(j) - \hat{Z}(j/k) , j \geq k \\ &Z^k = \left\{ Z(i), i =1,\cdots,k \right\} \end{aligned} X^(j/k)=E[X(j)/Zk]X~(j/k)=X(j)−X^(j/k)Z^(j/k)=E[Z(j)/Zk]