一、卡平方()测验定义和分布
是相互独立的多个正态离差平方值的总和 。
服从真高分布N(
,
),
不一定来自同一个正态总体,即
,
可以是来自不同正态分布的参数。若研究对象属于同一个总体,则
=
,
=
。所研究的总体
不知时,用
替代。
这一分布的自由度为独立的正态离差的个数,此处v=n,其分布图形为一组具不同自由度v值的曲线。值最小为0,最大为
,因而在坐标轴的右面。自由度小时呈偏态,随着自由度增加,偏度降低,至+
时,呈对称分布。该分布的平均数为v,方差为2v。
K.Pearson根据的定义从属性性状的分布推到用于次数资料(计数资料)分析的
公式
是多项
或(o-e)^2/e之和,
具有可加性。
二、在方差同质性测验中的应用
在连续性变数的分析中常用以方差的比较,并用以估计总体的方差。一个样本方差与总体方差的比较和二样本方差的比较可用F测验,多个样本间方差的比较须用
测验。
(1)一个样本方差与给定总体方差比较的假设测验
测验单个样本方差其所代表的总体方差和给定的总体方差值C是否有显著差异,简称一个样本与给定总体方差的比较。
两尾测验:H0:=C 显著大于和小于C的
值是>
和<
一尾测验:测验样本总体方差是否大于给定总体方差C。H0:C,显著时
值是>
从抽样分布可知,方差的抽样分布是不对称的。由卡方的定义=
,应用
分布由样本
给出总体
的置信区间。
置信限是不对称的,即从L1到的距离不等于L2到
的距离。可利用置信限做显著性测验,也可算出标准差的置信限。
一般n30,单个样本方差用卡方分布来测验和推断置信区间
一般n>30,卡方分布近似对称,sqrt(2)-sqrt(2v-1)近似服从N(0,1)分布,可用u测验并进行区间估计
两样本间方差比较可用卡方测验,方法是对两个样本分别估计出其总体方差的置信区间,若两者不重叠便有显著差异,F测验更方便。
(2)几个样本方差的同质性测验
假定有3个及以上的样本,每一样本均可估得一方差,则由卡方可测验各样本方差是否来自相同方差总体的假设,这称为方差的同质性测验(test for homogeneity among variances)
H0:(k为样本数)
:
不全相等。这一测试方法由Bartlett式(1937)提出,是一种近似
测验。
上述的值若不用C矫正,亦近似做
分布,不论矫正与否均具有v=k-1;若所得
值不显著,则不必再做矫正,接受无效假设;
值接近
,应作矫正。
>
,否定原假设,表明这些样本所属总体方差不是同质的。
三、适合性测验(tset for goodness of fit )
测验用于计数资料。
四、独立性测验(test for independence)
主要探求两个变数间是否相互独立。