【有啥问啥】OpenAI 提出的基于规则的奖励(rule-based rewards)RBRs是什么?

RBRs

OpenAI 提出的基于规则的奖励(rule-based rewards)RBRs是什么?

在机器学习和强化学习领域,奖励模型是引导代理(agent)学习和优化行为的关键因素。OpenAI 提出的基于规则的奖励(rule-based rewards)RBRs是一种通过明确的规则来定义奖励和惩罚的方法。这种方法在特定的任务环境中具有直观和高效的优点,适用于需要明确行为准则的场景。本文将详细介绍这种模型的定义、设计、应用以及在复杂任务中的挑战和解决方案。

1. 基于规则的奖励模型概述

基于规则的奖励模型是通过一组预定义的规则来决定代理在执行任务时获得的奖励或惩罚。这些规则通常由人类专家制定,明确描述了在任务环境中什么行为是好的(需要奖励)或坏的(需要惩罚)。

公式表示

假设在某个时间步 t t t,代理执行了动作 a t a_t at 并转移到新的状态 s t + 1 s_{t+1} st+1,奖励函数 R R R 可以表示为:

R ( s t , a t , s t + 1 ) = ∑ i w i ⋅ r i ( s t , a t , s t + 1 ) R(s_t, a_t, s_{t+1}) = \sum_{i} w_i \cdot r_i(s_t, a_t, s_{t+1}) R(st,at,st+1)=iwiri(st,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有啥问啥

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值