OpenAI 提出的基于规则的奖励(rule-based rewards)RBRs是什么?
在机器学习和强化学习领域,奖励模型是引导代理(agent)学习和优化行为的关键因素。OpenAI 提出的基于规则的奖励(rule-based rewards)RBRs是一种通过明确的规则来定义奖励和惩罚的方法。这种方法在特定的任务环境中具有直观和高效的优点,适用于需要明确行为准则的场景。本文将详细介绍这种模型的定义、设计、应用以及在复杂任务中的挑战和解决方案。
1. 基于规则的奖励模型概述
基于规则的奖励模型是通过一组预定义的规则来决定代理在执行任务时获得的奖励或惩罚。这些规则通常由人类专家制定,明确描述了在任务环境中什么行为是好的(需要奖励)或坏的(需要惩罚)。
公式表示
假设在某个时间步 t t t,代理执行了动作 a t a_t at 并转移到新的状态 s t + 1 s_{t+1} st+1,奖励函数 R R R 可以表示为:
R ( s t , a t , s t + 1 ) = ∑ i w i ⋅ r i ( s t , a t , s t + 1 ) R(s_t, a_t, s_{t+1}) = \sum_{i} w_i \cdot r_i(s_t, a_t, s_{t+1}) R(st,at,st+1)=i∑wi⋅ri(st,