工业机器人运动学建模全解析
一、工业机器人概述与运动学模型的重要性
工业机器人通常是由连杆和关节串联而成的链式机构,其基座安装在固定或移动平台上。末端执行器由驱动器(如伺服电机)驱动以完成相关任务。然而,机器人的定位精度会受到多种误差源的影响,这些误差通过关节传递到末端执行器,从而导致定位误差。
运动学模型是研究机器人运动规律和误差分析的理论基础。严格来说,机器人运动学研究应包含机器人连杆之间的位姿关系、速度关系和加速度关系。其中,位姿关系在机器人误差补偿中更为关键,特别是在机器人逆运动学的封闭解问题上。接下来将探讨机器人正、逆运动学模型的建立,并分析和评估定位误差规律,为后续的误差补偿提供理论依据。
二、位姿描述与变换
(一)位置和姿态的描述
刚体的姿态和位置统称为位姿。在描述工业机器人时,连杆通常被视为刚体。为了描述机器人的运动学,引入了齐次变换方法,它可以将运动、变换、映射和矩阵运算联系起来。
在笛卡尔坐标系 {A} 中,空间中运动的刚体上任意参考点 p 的位置可以用一个 3×1 向量表示:
$\ ^{A}\mathbf{p} = [p_x \ p_y \ p_z]^T$
其中,$p_x$、$p_y$、$p_z$ 分别是点 p 在 {A} 的 x、y、z 轴上的坐标分量。
为了描述刚体 B 在空间中的姿态,给它附着一个笛卡尔坐标系 {B}。刚体 B 相对于 {A} 的姿态可以用一个 3×3 矩阵表示,该矩阵由 {B} 的三个单位向量 $\mathbf{x} B$、$\mathbf{y}_B$、$\mathbf{z}_B$ 相对于 {A} 的方向余弦组成: <
订阅专栏 解锁全文
2660

被折叠的 条评论
为什么被折叠?



