DeepSearcher 开源:告别传统 RAG,私有数据+DeepSeek,打造本地版 Deep Research

大家好,我是玄姐。

正文开始之前,先给我自己打个广告,DeepSeek 爆火国之荣耀为了回馈粉丝们的支持,原价199元的《基于 DeepSeek 打造的 AI Agent 智能体项目实战直播训练营》直接降价到19元今天再开放一天报名特权,仅限99名。

回到正题。

这个春节,DeepSeek  实在太火爆了

近期,Open AI 推出的 Deep Research(深度研究)功能引发了广泛关注。该功能通过整合大模型、超级搜索和研究助理于一体,使得金融机构能够一键生成报告,科研人员能够一键撰写综述,极大提升了效率。然而,由于企业场景中私有化数据的敏感性和成本考虑,如何将 Deep Research 进行开源的本地化部署,成为许多人的关注焦点。

在这篇文章中,我们将对市场上模仿 Deep Research 的开源项目进行简要分析,并结合 Deepseek 等主流开源模型,Zilliz 推出一款名为 Deep Searcher 的开源项目。该项目的目标是帮助用户在企业级场景下,基于 Deep Research的思路,实现私有化部署。此外,此方案在现有的RAG(Retrieval-Augmented Generation)方案上进行了重要升级。

GitHub 的尝鲜链接

https://github.com/zilliztech/deep-searcher

1

什么是 Deep Research,为什么需要开源平替?

最近,OpenAI 推出了一款先进的 AI 研究工具——Deep Research,目的是为了帮助用户更高效地处理复杂的研究工作。这款工具基于 OpenAI 最新的 o3 大模型,特别针对网络浏览和数据分析进行了优化。

第一、核心功能包括

多阶段信息搜集与推理:Deep Research 能够自动执行多阶段的网络调研,迅速整合网络上的大量信息,涵盖文本、图片和 PDF 文件。

专业报告自动生成:通过分析综合数百个在线资源,Deep Research 可以在5至30分钟内生成一份包含详细引用的专业报告,显著减少传统研究所需的时间。

第二、应用场景涵盖

学术研究:学者和研究人员可以利用 Deep Research 快速搜集相关领域的深入资料,辅助撰写论文和进行研究。

市场分析:企业可以使用此工具进行市场调研、竞争分析和产品比较,为商业决策提供支持。

产品评估:消费者可以利用 Deep Research 比较不同产品的特点和评价,做出更明智的购买选择。

总体而言,Deep Research 作为 OpenAI 推出的深度研究产品,旨在通过自动化的信息搜集和分析,助力用户高效完成复杂的研究任务。但目前,Deep Research 仅对美国地区的 OpenAI Pro 用户开放,费用为每月200美元,且每月查询次数限制为100次。

第三、开源解决方案

目前,大多数用户尚无法使用 OpenAI 的 Deep Research 功能。不过,自从 OpenAI 发布该功能后,许多开源社区的贡献者开始分析并尝试复现这一功能。

GitHub 上已经出现了多个开源方案,它们的实现流程大致分为以下四个步骤

第一步问题分析:大模型分析用户提出的问题,确定回答问题所需的角度和步骤。许多大型模型(比如:DeepSeek、ChatGPT、Gemini 等)只需开启推理选项即可完成这一过程。

第二步在线搜索:根据大模型生成的问题进行在线搜索,获取搜索结果的前 k 项,并将内容反馈给大模型。

第三步内容总结:大模型根据在线内容生成简洁的答案。

第四步答案验证:将所有内容汇总后,由大模型判断答案的完整性和准确性。

如果答案完整且准确,则输出最终答案。如果达到预设的循环次数或 token 上限,同样输出最终答案。否则,生成新问题,返回第一步,并将历史解决信息带入下一轮循环

### Ollama + DeepSeek-R1:32B + Docker + RAG Flow/Open WebUI 本地部署 #### 简介 DeepSeek是由阿里云推出的大型语言模型,而`DeepSeek-R1:32B`是指该系列的一个特定本,拥有约320亿参数规模。为了方便用户使用这个强大的模型,可以通过Docker容器化技术以及RAG (Retrieval-Augmented Generation) 流程来进行本地环境下的快速部署。 #### 部署步骤概述 1. **安装Docker**:如果你还没有安装Docker的话,则需要先下载并按照官方指南完成其设置过程; - [Docker官网](https://www.docker.com/) 2. **获取镜像文件**: 使用Ollama提供的命令行工具或者直接从仓库拉取包含有预训练权重和其他必要组件的docker image ```bash docker pull ollama/deepseek-r1:32b # 假设这是正确的标签名称 ``` 3. **配置数据集与索引构建**: 对于想要增强生成结果准确性的场景来说,在启动之前还需要准备相应的文本资料库,并通过一些额外脚本创建搜索索引来支持检索增强功能(Retrieve Augment Generate)。 4. **运行Web UI服务端口映射等选项自定义** 根据个人需求调整命令参数如开放HTTP访问地址、设定内存限制等等。 ```bash docker run --name my_deepseek_webui -p 7860:7860 ollama/deepseek-webui:latest ``` 5. **打开浏览器连接至localhost指定端口号即可开始体验** 以上即是在个人电脑上搭建基于ollama平台发布的deepseek大模型加web界面交互的整体流程简介。 --- 需要注意的是实际操作过程中可能会遇到各种问题比如依赖项冲突或者是硬件资源不足等问题,建议参考具体产品的文档说明进一步排查解决办法。 --
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值