前言
只是为方便学习,不做其他用途,参考知乎文章N-S方程篇2:物质导数
对流动模型:流体微元(Fluid Element)和有限控制体(Control Volume)的理解 可以参考文章N-S方程篇1:描述流体运动的欧拉法和拉格朗日法
物质导数
公式推导
通俗理解
上面通过推导的方法说明了物质导数的概念,由于这个概念非常重要,专家们为了让我们更容易理解这个概念,给出了一些通俗的比喻:
Anderson[1]的比喻是假设你要进入一个山洞,山洞内的温度低于外面的温度,因此在进入洞口的一刹那你会感觉到气温的降低,这就是对流导数,即由于空间的变化而感受到的温度的变化;而就在你走入洞口的这一瞬间,有一个人扔了一个雪球在你脖子里,你会感受到一个额外的、瞬间的温度降低,这个就是当地导数,即是由于当地温度的变化而引起的变化;而物质导数即是你感觉到的总的温度变化。
中科院的李新亮研究员给出了一个更加形象的例子:高铁的电子显示屏上会实时显示车外的温度,如果我们将高铁看作是一个流体微元,它早上从北京出发,中午到达上海,显示屏上记录的室外温度的变化就是物质导数,它包含了两个部分,一是从北京到上海的地理位置的变化所带来的温度变化,即对流导数;二是由于早上到中午由于时间不同而引起的温度变化,即当地导数。
通过这两个例子,相信可以更好的理解物质导数的物理意义,这一概念的重要性在进行N-S方程的推导时就会看到。
参考资料
[1] Anderson, J. D. Computational Fluid Dynamics: The Basics with Applications. 1995.