这里我们直接给出MA(q)模型的形式:
c0为一个常数项。这里的at,是AR模型t时刻的扰动或者说新息(也就是白噪声误差项),则可以发现,该模型,使用了过去q个时期的随机干扰或预测误差来线性表达当前的预测值。
MA模型的性质
平稳性
MA模型总是弱平稳的,因为他们是白噪声序列(残差序列)的有限线性组合。因此,根据弱平稳的性质可以得出两个结论:
自相关函数
对q阶的MA模型,其自相关函数ACF总是q步截尾的。 因此MA(q)序列只与其前q个延迟值线性相关,从而它是一个“有限记忆”的模型。
可逆性
当满足可逆条件的时候,MA(q)模型可以改写为AR(p)模型。这里不进行推导,给出1阶和2阶MA的可逆性条件。
1阶: