滑动平均(Moving Average Models,MA)模型

滑动平均(MA)模型是一种利用过去q个时期的随机扰动来预测当前值的统计模型。文章探讨了MA模型的平稳性、自相关函数和可逆性,指出其自相关函数具有q步截尾的特点。MA模型在建模和预测中,可以通过设置ARMA模型的AR部分为0来实现。拟合效果类似于AR模型,但计算量会随着阶次增加而显著增大。
摘要由CSDN通过智能技术生成

这里我们直接给出MA(q)模型的形式:

 


c0为一个常数项。这里的at,是AR模型t时刻的扰动或者说新息(也就是白噪声误差项),则可以发现,该模型,使用了过去q个时期的随机干扰或预测误差来线性表达当前的预测值

MA模型的性质

平稳性

MA模型总是弱平稳的,因为他们是白噪声序列(残差序列)的有限线性组合。因此,根据弱平稳的性质可以得出两个结论:

 

自相关函数

对q阶的MA模型,其自相关函数ACF总是q步截尾的。 因此MA(q)序列只与其前q个延迟值线性相关,从而它是一个“有限记忆”的模型。

可逆性

当满足可逆条件的时候,MA(q)模型可以改写为AR(p)模型。这里不进行推导,给出1阶和2阶MA的可逆性条件。

1阶:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值