12_线性系统的频域分析与校正(Nyquist图、Bode图)

线性系统的频域分析与校正

频域分析法特点

  • 研究稳态正弦响应的幅值和相角随频率的变化规律
  • 由开环频率特性研究闭环稳定性及性能
  • 图解分析法,方便,实用
  • 有一定近似性

频域特性的基本概念

频率响应

在这里插入图片描述

频率特性 G ( j w ) G(jw) G(jw)的定义

在这里插入图片描述

G ( j w ) G(jw) G(jw)定义一: G ( j w ) = ∣ G ( j w ) ∣ ∠ G ( j w ) G(jw)=|G(jw)|\angle G(jw) G(jw)=G(jw)∣∠G(jw)

{ ∣ G ( j w ) = ∣ c s ( t ) ∣ ∣ r ( t ) ∣ = 1 1 + w 2 T 2 幅频特性 ∠ G ( j w ) = ∠ c s ( t ) − ∠ r ( t ) = − arctan ⁡ w T 相频特性 \begin{cases} |G(jw)=\frac{|c_s(t)|}{|r(t)|}=\frac{1}{\sqrt{1+w^2T^2}}\quad幅频特性\\ \angle G(jw)=\angle c_s(t)-\angle r(t)=-\arctan{wT}\quad相频特性\\ \end{cases} {G(jw)=r(t)cs(t)=1+w2T2 1幅频特性G(jw)=cs(t)r(t)=arctanwT相频特性

G ( j w ) G(jw) G(jw)定义二: G ( j w ) = G ( s ) ∣ s = j w G(jw)=G(s)|_{s=jw} G(jw)=G(s)s=jw

1 1 + w 2 T 2 ∠ − arctan ⁡ w T = ∣ 1 1 + j w T ∣ ∠ 1 1 + j w T = 1 1 + j w T = 1 T s + 1 ∣ s = j w \begin{aligned} \frac{1}{\sqrt{1+w^2T^2}}\angle-\arctan{wT}=|\frac{1}{1+jwT}|\angle\frac{1}{1+jwT}=\frac{1}{1+jwT}=\frac{1}{Ts+1}|_{s=jw}\\ \end{aligned} 1+w2T2 1arctanwT=1+jwT1∣∠1+jwT1=1+jwT1=Ts+11s=jw

G ( j w ) G(jw) G(jw)定义三: G ( j w ) = C ( j w ) R ( j w ) G(jw)=\frac{C(jw)}{R(jw)} G(jw)=R(jw)C(jw)
例题

在这里插入图片描述

频率特性 G ( j w ) G(jw) G(jw)表示方法 以 G ( j w ) = 1 T s + 1 ∣ s = j w G(jw)=\frac{1}{Ts+1}|_{s=jw} G(jw)=Ts+11s=jw为例

频率特性

在这里插入图片描述

幅相特性(Nyquist)

在这里插入图片描述

对数频率特性(Bode)

在这里插入图片描述

  • 工程上常用
对数幅相特性(Nichols)

在这里插入图片描述

系统模型间的关系

在这里插入图片描述

幅相频率特性(Nyquist图)(掌握)

典型环节的幅相频率特性曲线

比例环节: G ( s ) = K G(s)=K\quad G(s)=K

G ( j w ) = K { ∣ G ∣ = K ∠ G = 0 ° G(jw)=K\quad\begin{cases}|G|=K\\\angle G=0°\end{cases} G(jw)=K{G=KG=
在这里插入图片描述

微分环节: G ( s ) = s G(s)=s G(s)=s

G ( j w ) = j w { ∣ G ∣ = 1 ∠ G = 90 ° G(jw)=jw\quad\begin{cases}|G|=1\\\angle G=90°\end{cases} G(jw)=jw{G=1G=90°

在这里插入图片描述

积分环节: G ( s ) = 1 s G(s)=\frac{1}{s} G(s)=s1

G ( j w ) = 1 j w { ∣ G = 1 ∠ G = − 90 ° G(jw)=\frac{1}{jw}\quad\begin{cases}|G=1\\\angle G=-90°\end{cases} G(jw)=jw1{G=1G=90°

在这里插入图片描述

惯性环节: G ( s ) = 1 T s + 1 G(s)=\frac{1}{Ts+1} G(s)=Ts+11

G ( j w ) = 1 1 + j w T { ∣ G ∣ = 1 1 + w 2 T 2 ∠ G = − arctan ⁡ w T G(jw)=\frac{1}{1+jwT}\quad\begin{cases}|G|=\frac{1}{\sqrt{1+ w^2T^2}}\\\angle G=-\arctan{wT}\end{cases} G(jw)=1+jwT1{G=1+w2T2 1G=arctanwT

在这里插入图片描述

证明: 惯性环节 G ( j w ) = 1 1 + j w T G(jw)=\frac{1}{1+jwT} G(jw)=1+jwT1的幅相特性为半圆

G ( j w ) = 1 1 + j w T = 1 − j w T 1 + w 2 T 2 = X + j Y X = 1 1 + w 2 T 2 Y = − w T 1 + w 2 T 2 Y = − w T X w T = − Y X X = 1 1 + Y 2 X 2 X + Y 2 X = 1 X 2 + Y 2 = X ( x − 1 2 ) + Y 2 = 1 4 Y = − w T x ( 下半圆 ) \begin{aligned} G(jw)&=\frac{1}{1+jwT}=\frac{1-jwT}{1+w^2T^2}=X+jY\\ X&=\frac{1}{1+w^2T^2}\\ Y&=-\frac{wT}{1+w^2T^2}\\ Y&=-wTX\\ wT&=-\frac{Y}{X}\\ X&=\frac{1}{1+\frac{Y^2}{X^2}}\\ X&+\frac{Y^2}{X}=1\\ X^2&+Y^2=X\\ (x-\frac{1}{2})&+Y^2=\frac{1}{4}\quad Y=-wTx(下半圆)\\ \end{aligned} G(jw)XYYwTXXX2(x21)=1+jwT1=1+w2T21jwT=X+jY=1+w2T21=1+w2T2wT=wTX=XY=1+X2Y21+XY2=1+Y2=X+Y2=41Y=wTx(下半圆)

例题

在这里插入图片描述

不稳定惯性环节: G ( s ) = 1 T s − 1 G(s)=\frac{1}{Ts-1} G(s)=Ts11

G ( j w ) = 1 − 1 + j w T = − 1 + j w T 1 + w 2 T 2 = − 1 1 + w 2 T 2 − j w T 1 + w 2 T 2 G(jw)=\frac{1}{-1+jwT}=-\frac{1+jwT}{1+w^2T^2}=-\frac{1}{1+w^2T^2}-j\frac{wT}{1+w^2T^2}\\ G(jw)=1+jwT1=1+w2T21+jwT=1+w2T21j1+w2T2wT

在这里插入图片描述

一阶复合微分: G ( s ) = T s ± 1 G(s)=Ts\pm1 G(s)=Ts±1

G ( j w ) = ± 1 + j w T { ∣ G ∣ = 1 + w 2 T 2 ∠ G = { arctan ⁡ w T 180 ° − arctan ⁡ w T G(jw)=\pm1+jwT\quad\begin{cases} |G|=\sqrt{1+w^2T^2}\\ \angle G=\begin{cases}\arctan{wT}\\ 180°-\arctan{wT} \end{cases} \end{cases} G(jw)=±1+jwT G=1+w2T2 G={arctanwT180°arctanwT

在这里插入图片描述

振荡环节: G ( s ) = w n 2 s 2 + 2 ξ w n s + w n 2 G(s)=\frac{w_n^2}{s^2+2\xi w_ns+w_n^2} G(s)=s2+2ξwns+wn2wn2

在这里插入图片描述
在这里插入图片描述

  • 对于振荡环节 w r 和 M r w_r和M_r wrMr的公式需记住
例题

在这里插入图片描述

不稳定振荡环节

在这里插入图片描述

二阶复合微分

在这里插入图片描述

  • ξ \xi ξ越大, ∣ G ∣ |G| G越大,曲线在越外面

延迟环节

在这里插入图片描述

开环幅相特性曲线的绘制

  • G ( j 0 ) 、 G ( ∞ ) G(j0)、G(\infty) G(j0)G()
  • 根据极点零点推断中间过程
  • 必要时求出 G ( j w ) G(jw) G(jw)与实/虚轴的交点

在这里插入图片描述

对数频率特性(Bode图)(掌握)

Bode图介绍

在这里插入图片描述

  • 纵轴: L ( w ) = 20 l g ∣ G ( j w ) ∣ d B L(w)=20lg|G(jw)|\quad dB L(w)=20lgG(jw)dB"分贝"
  • l g P c p r ( 贝尔 ) = 10 l g P c P r ( 分贝 ) lg\frac{P_c}{p_r}(贝尔)=10lg\frac{P_c}{P_r}(分贝) lgprPc(贝尔)=10lgPrPc(分贝)
  • 特点
    • 幅值相乘=对数相加,便于叠加作图;
    • 可在大范围内表示频率特性
    • 利用实验数据更容易确定 L ( w ) L(w) L(w),进而确定 G ( s ) G(s) G(s)

典型环节的Bode图

比例环节: G ( j w ) = K G(jw)=K G(jw)=K

{ L ( w ) = 20 l g K φ ( w ) = 0 ° \begin{cases} L(w)=20lgK\\ \varphi(w)=0°\\ \end{cases} {L(w)=20lgKφ(w)=
在这里插入图片描述

微分环节: G ( j w ) = j w G(jw)=jw G(jw)=jw

{ L ( w ) = 20 l g w φ ( w ) = 90 ° \begin{cases} L(w)=20lgw\\ \varphi(w)=90°\\ \end{cases} {L(w)=20lgwφ(w)=90°
在这里插入图片描述

积分环节: G ( j w ) = 1 j w G(jw)=\frac{1}{jw} G(jw)=jw1

{ L ( w ) = 20 l g ∣ G ( j w ) ∣ = − 20 l g w φ ( w ) = − 90 ° \begin{cases} L(w)=20lg|G(jw)|=-20lgw\\ \varphi(w)=-90°\\ \end{cases} {L(w)=20lgG(jw)=20lgwφ(w)=90°

在这里插入图片描述

惯性环节: G ( j w ) = 1 ± 1 + j w T G(jw)=\frac{1}{\pm1+jwT} G(jw)=±1+jwT1

在这里插入图片描述

  • w T < 1 wT<1 wT<1 L ( w ) ≈ − 20 l g 1 = 0 L(w)\approx-20lg1=0 L(w)20lg1=0

  • w T > 1 wT>1 wT>1 L ( w ) ≈ − 20 l g ( w T ) L(w)\approx-20lg(wT) L(w)20lg(wT)

  • 惯性环节对数相频特性 φ ( w ) \varphi(w) φ(w)关于 ( w = 1 T , φ = 45 ° ) (w=\frac{1}{T},\varphi=45°) (w=T1,φ=45°)点对称

一阶复合微分: G ( j w ) = ± 1 + j w T G(jw)=\pm1+jwT G(jw)=±1+jwT

在这里插入图片描述

  • 一阶复合微分与惯性环节关于实轴对称

振荡环节: G ( s ) = w n 2 s 2 ± 2 ξ w n s + w n 2 G(s)=\frac{w_n^2}{s^2\pm2\xi w_ns+w_n^2} G(s)=s2±2ξwns+wn2wn2

在这里插入图片描述

  • ξ \xi ξ越大 ∣ G ∣ |G| G越小, L ( w ) L(w) L(w)的曲线越靠近下面
  • 根据图求解参数时, 首先可以根据转折点的位置求出   w n \ w_n  wn
  • 相角跨了两个象限

二阶复合微分: G ( s ) = ( s w ) 2 ± 2 ξ s w + 1 G(s)=(\frac{s}{w})^2\pm2\xi\frac{s}{w}+1 G(s)=(ws)2±2ξws+1

在这里插入图片描述

  • 二阶复合微分与振荡环节互为倒数,关于实轴对称
  • ξ \xi ξ越大, ∣ G ∣ |G| G越大, L ( w ) L(w) L(w)的曲线越靠近上面

延迟环节: G ( s ) = e − τ s G(s)=e^{-\tau s} G(s)=eτs

在这里插入图片描述

例题

例1

在这里插入图片描述

  • 截止频率 w c w_c wc,传递函数的模 ∣ G ( j w c ) ∣ = 1 |G(jw_c)|=1 G(jwc)=1对应的频率
  • 转折频率, 波特图斜率发生较大变化的点对应的频率

例2

在这里插入图片描述
在这里插入图片描述

系统开环对数频率特性曲线的绘制

绘制系统开环Bode图的步骤

(1) 化 G ( s ) G(s) G(s)为尾1标准型
(2) 顺序列出转折频率
(3) 确定基准线

{ 基准点 ( w = 1 , L ( w ) = 20 l g K ) 斜率 − 20 ⋅ v d B / d e c \begin{cases} 基准点(w=1,L(w)=20lgK)\\ 斜率\quad-20·v\quad dB/dec\\ \end{cases} {基准点(w=1,L(w)=20lgK)斜率20vdB/dec

(4) 叠加作图

{ 一阶 { 惯性环节 − 20 d B / d e c 复合微分 + 20 d B / d e c 二阶 { 振荡环节 − 40 d B / d e c 复合微分 + 40 d B / d e c \begin{cases} 一阶\begin{cases} 惯性环节\quad-20dB/dec\\ 复合微分\quad+20dB/dec\\ \end{cases}\\ 二阶\begin{cases} 振荡环节\quad-40dB/dec\\ 复合微分\quad+40dB/dec \end{cases} \end{cases} 一阶{惯性环节20dB/dec复合微分+20dB/dec二阶{振荡环节40dB/dec复合微分+40dB/dec

(5) 修正 { ① 两惯性环节转折频率很接近时 ② 振荡环节 ξ ∉ ( 0.38 , 0.8 ) 时 \begin{cases}①\quad两惯性环节转折频率很接近时\\②\quad振荡环节\xi\notin(0.38,0.8)时\end{cases} {两惯性环节转折频率很接近时振荡环节ξ/(0.38,0.8)
(6) 检查 { ① L ( w ) 最右端曲线斜率 = − ( n − m ) d B / d e c ② 转折点数 = ( 惯性 ) + ( 一阶复合微分 ) + ( 振荡 ) + ( 二阶复合微分 ) ③ φ ( w ) ⇒ − 90 ° ( n − m ) \begin{cases}①\quad L(w)最右端曲线斜率=-(n-m)dB/dec\\②\quad转折点数=(惯性)+(一阶复合微分)+(振荡)+(二阶复合微分)\\③\quad\varphi(w)\Rightarrow-90°(n-m)\end{cases} L(w)最右端曲线斜率=(nm)dB/dec转折点数=(惯性)+(一阶复合微分)+(振荡)+(二阶复合微分)φ(w)90°(nm)

例题

例4

在这里插入图片描述

例6

在这里插入图片描述

最小相角系统和非最小相角系统

非最小相角系统

  • 在右半平面存在开环零、极点或纯延时环节的系统

  • 非最小相角系统相角变化的绝对值一般比最小相角系统的大

  • 非最小相角系统未必不稳定

  • 非最小相角系统未必一定要画0°根轨迹

  • 最小相角系统由 L ( w ) L(w) L(w)可以唯一确定 G ( s ) G(s) G(s)

  • 非最小相角系统由 L ( w ) L(w) L(w)不可以唯一确定 G ( s ) G(s) G(s)

参考资料

【(新版!最清晰!去噪不炸耳!)自动控制原理 西北工业大学 卢京潮】

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值