结合量化的知识蒸馏(Quantization Mimic)

本文介绍了一种名为Quantization Mimic的方法,它将知识蒸馏和模型量化技术相结合,用于创建小而高效的物体检测网络。通过量化技术减少参数搜索空间,降低过拟合,并利用知识蒸馏将教师网络的知识转移至轻量级学生网络。实验表明,这种方法在保持性能的同时显著减小了网络规模。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

"Quantization Mimic Towards Very Tiny CNN for Object Detection"这篇文章通过将知识蒸馏(Knowledge Distillation)与量化技术(Model Quantization)有效结合,能够诱导训练生成纤细、但性能良好的目标检测网络(主干网络通道数少、层数浅的R-FCN或Faster RCNN)。Quantization Mimic中量化技术能够缩小参数搜索空间,从而带来正则化效应,有效降低过拟合;而知识蒸馏则负责将复杂教师网络的知识迁移至学生网络。

Quantization Mimic的整体框架如上图所示,首先训练一个性能优越的全精度教师网络(如R-FCN-VGG);再将教师网络予以量化,获得量化后的Feature Maps输出;然后设计一个纤细的学生网络(如R-FCN-VGG-1-32),并予以量化;最后在诱导训练期间,比较教师网络与学生网络的量化输出(即L2 loss),完成知识迁移。

量化技术选择线性均匀方式,原因在于文章以R-FCN或Faster-RCNN作为benchmark,而这两种检测网络更关注ROI内部的激活响应,通常这些响应比较剧烈,因此均匀量化能够更好地保留输出信息。反观INQ采用的非均匀量化能够更好地描述一般性的激活或权重分布(非均匀、近高斯分布)。文章采用的量化表示如下&#x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值