[贝叶斯五]之朴素贝叶斯

一、前因

这一章节依然是基础知识,贝叶斯分类器的核心就是要计算出后验概率 p(wi|x) p ( w i | x ) ,依据贝叶斯定理

p(wi|x)=p(x|wi)p(wi)p(x) p ( w i | x ) = p ( x | w i ) p ( w i ) p ( x )

其中:

  • p(wi) p ( w i ) 是类别 i i 出现的概率,这个比较好求。根据训练样本

(1)p(wi)=#i#

  • p(x) p ( x ) 可以用全概率公式进行计算

但是似然(类别条件概率) p(x|wi) p ( x | w i ) 该怎么求? 很多时候,样本 x x 都是多属性的(也就是机器学习中通常说的特征空间是多维度的)。这就是朴素贝叶斯诞生原因。

二、推导

不是说类别条件概率不好求么?而且不好求的原因是样本x是多属性的。那么我们就假设属性之间是相互独立的。这就是朴素贝叶斯。基于这个假设,我们用条件概率的乘法原理重写贝叶斯公式。(假设输入样本是 d d 维的)

(2)p(wi|x)=p(x|wi)p(wi)p(x)(3)=p(wi)p(x)k=1dp(xk|wi)

继续改写 p(x) p ( x ) ,因为对于所有的类别来说都是相等的。

f=argmaxi p(wi|x)=argmaxi p(wi)k=1dp(xk|wi)(4)(5) (4) f = a r g m a x i   p ( w i | x ) (5) = a r g m a x i   p ( w i ) ∏ k = 1 d p ( x k | w i )

这就是朴素贝叶斯的目标函数。

三、参考文献

[1] 周志华. 《机器学习》[M]. 清华大学出版社, 2016.
[2] 李航. 《统计学习方法》[M].清华大学出版社,2013.



<个人网页blog已经上线,一大波干货即将来袭:https://faiculty.com/>

/* 版权声明:公开学习资源,只供线上学习,不可转载,如需转载请联系本人 .*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值