如何让不懂技术的CEO也能理解AI的底层逻辑

目前AI崛起已经有了好几年,特别在AI通用大模型领域、自动驾驶等方面的落地的应用越来越多,越让人们对于AI有了具象化的体验。但是具体在不同行业应用深度却不高,但是对于AI是未来的下一个趋势,大家都觉得毋庸置疑。因此,很多中小公司的CEO,都要求公司研发部门去研究AI,在业务中应用AI,但是往往结果都很一般,而大部分人对于AI的底层逻辑都不是很清楚。因此,想通过这边文章和大家聊聊AI的底层逻辑是什么,由于这个认知的局限性,因此,如果存在认知错误与偏差还希望指正。

首先,我们来说结论,AI逻辑公式为:

底层逻辑

AI定义

人工智能(Artificial Intelligence,简称AI):

人工智能(Artificial Intelligence),是一个以计算机科学(Computer Science)为基础,由计算机、心理学、哲学等多学科交叉融合的交叉学科、新兴学科,研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

一句话定义:让计算机拥有像人一样的学习、理解和思考,并能够解决实际问题的能力。

人是如何来解决一个新的问题的

如果人需要解决一个问题,需要有学习、理解、思考和解决问题四个过程。如下图所示:

学习

  • 定义:学习是指通过阅读、观察、实践等方式获取新知识、新技能的过程。
  • 作用:学习是解决问题的基础。面对一个新问题,我们首先需要学习与该问题相关的背景知识、理论概念和方法工具,以便为后续的理解、思考和解决打下基础。
  • 与其他概念的关系:学习可以促进理解和思考,因为只有掌握了足够的知识,我们才能更好地理解问题的本质和复杂性,进而进行深入的思考和分析。

理解

  • 定义:理解是指对事物的本质、规律、联系和意义的认识和把握。
  • 作用:理解是解决问题的关键环节。在学习了相关知识后,我们需要对问题本身进行深入的理解,包括理解问题的起因、现状、影响因素以及可能的解决方案等。
  • 与其他概念的关系:理解是学习的目的和结果,通过学习我们才能达到对问题的理解。同时,理解也是思考的前提,只有真正理解了问题,我们才能进行有效的思考和分析。

思考

  • 定义:思考是指对事物进行分析、综合、比较、抽象、概括等思维活动的过程。
  • 作用:思考是解决问题的核心过程。在学习了相关知识并理解了问题之后,我们需要运用逻辑思维、批判性思维、创造性思维等思考方式,对问题进行深入的分析、推理和判断,从而找到解决问题的最佳方案。
  • 与其他概念的关系:思考是基于学习和理解的,是将学习到的知识和对问题的理解转化为解决问题的策略和行动的过程。同时,思考也可以促进进一步的学习和理解,因为在思考过程中,我们可能会发现新的知识盲点或对问题有更深入的理解。

解决问题

  • 定义:解决问题是指针对特定的问题,采取有效的措施和方法,使其得到圆满解决的过程。
  • 作用:解决问题是整个过程的最终目标。通过学习、理解和思考,我们最终要将所获得的知识、理解和思考成果转化为实际的解决方案,以解决实际问题。
  • 与其他概念的关系:解决问题是学习、理解和思考的综合应用和结果。学习提供了解决问题的知识基础,理解让我们明确了问题的本质和方向,思考则帮助我们找到了解决问题的具体方法和策略。

在实际解决问题的过程中,学习、理解、思考和解决问题并不是严格按照线性顺序进行的,而是相互交织、循环迭代的。通常,我们会先进行初步的学习,然后对问题进行初步的理解,接着进行初步的思考,形成初步的解决方案。因此,解决问题的过程是一个不断学习、理解、思考和调整的循环迭代过程。

我们举一个简单例子来进行说明:

如何让一个从来没有见过猫的小孩认识一只猫?

1. 观察猫:

•如果家里有宠物猫,让孩子近距离观察猫的行为,比如它如何走路、玩耍、睡觉等。

•如果没有宠物猫,可以带孩子去朋友家或收容所,在安全的情况下观察猫。

2. 介绍猫的身体部位:

•教孩子猫的不同身体部位,比如耳朵、眼睛、鼻子、胡须、爪子等,并解释它们的功能。

•使用绘本或者真实的猫来帮助孩子识别这些部位。

3. 讲述猫的生活习性:

•向孩子解释猫是夜行动物,喜欢抓东西,爱干净,会使用猫砂盆等。

•讲述猫是如何与人类互动的,例如它们可能会蹭人的腿表示友好。

...

以上6步基本上可以让一个正常小孩认识一只猫,下次在见到猫的时候,就可以认识猫,这个很容易理解。

到底为什么经过这个过程小孩就认识猫了呢?

那是因为我们大脑进行了以下4个过程,如下图所示:

当我们在教小孩认识的过程中,其实我们的大脑在进行如下的工作:

小孩通过对于猫的数据输入,识别出猫的一些特征,对于这些特征,进行了一些提取,例如:猫不仅仅有耳朵,并且耳朵需要尖尖的,有猫等,然后大人就告诉他,这个就是猫,于是根据这些特征就是构建了猫的特征库在大脑里面,下次遇见猫的时候,匹配大脑中的猫的特征库,于是就知道这个动物就是猫了。

同理,一个典型的机器学习流程,如果用于识别猫的图像。这个过程也是类似的,可以分解为以下几个步骤:这个过程可以分解为以下几个步骤:

  1. 数据输入:在这个阶段,系统接收原始数据,这里是一系列猫的图片。这些图片是算法将要学习的基础数据集。

  2. 识别算法 - 识别特征

    • 识别算法是机器学习模型的一部分,它负责从输入的数据中识别出有用的特征。在猫的图片识别中,这可能包括猫的耳朵形状、眼睛、胡须、毛皮纹理等特征。
    • 这些特征是区分猫与其他动物的关键属性,算法会学习如何从图像中提取这些特征。
  3. 提取算法 - 提取特征

    • 提取算法进一步处理识别出的特征,将它们转换成可以用于模型训练的格式。这可能涉及到图像处理技术,如边缘检测、颜色分析等,以提取出更加具体的特征数据。
    • 这些特征数据随后被用于构建模型,以便在新的、未见过的数据上进行预测。
  4. 模型算法 - 构建模型

    • 模型算法使用提取的特征来构建一个预测模型。这个模型通过学习特征与猫的关联性,能够对新的图像数据进行分类,判断它们是否是猫。
    • 构建模型的过程中,算法会通过迭代优化,调整模型参数,以提高识别的准确性。

整个流程的作用是让机器学习算法能够自动从数据中学习如何识别猫。这个过程涉及到数据预处理、特征工程、模型训练和评估等多个环节,最终目的是创建一个能够准确识别猫的智能系统。这种系统可以应用于各种场景,如社交媒体的图片标签、宠物识别应用或者安全监控系统中的动物识别等。

这张图描述了一个识别猫的过程,它是一个简化的机器学习或图像识别流程。以下是对图中每个步骤的描述及其作用:

  1. 数据输入:参见认识猫的过程

  2. 识别算法 - 识别特征:参见认识猫的过程

  3. 提取算法 - 提取特征:参见认识猫的过程

  4. 匹配算法 - 匹配模型

    • 匹配算法使用提取的特征来与已知的猫的特征进行比较。这通常涉及到构建一个模型,该模型能够根据输入的特征数据来判断图片中是否包含猫。
    • 匹配算法的作用是将提取的特征与模型中的特征进行匹配,以确定图片中的动物是否为猫。

整个流程的作用是训练机器学习模型,使其能够自动从图像中识别出猫。这个过程涉及到数据预处理、特征识别、特征提取和模型匹配等多个环节,最终目的是创建一个能够准确识别猫的智能系统。这种系统可以应用于各种场景,如社交媒体的图片标签、宠物识别应用或者安全监控系统中的动物识别等。

什么是特征

上面我们说了很多识别特征、提取特征等,那究竟什么是特征。

在机器学习和图像识别的背景下,"特征"(Feature)是指数据集中的一个可测量的属性或变量,它可以被用来区分数据集中的不同实例。特征是构建模型的基础,它们为模型提供了必要的信息,以便进行分类、识别或预测。

以下是特征的一些关键点:

  1. 区分性:特征应该能够区分不同的类别或对象。例如,在猫的识别中,耳朵的形状、眼睛的大小和毛色都是区分猫和其他动物的特征。

  2. 相关性:特征与目标变量(即你想要预测或识别的变量)相关。在猫识别的例子中,特征与识别对象是否为猫这一目标高度相关。

  3. 可量化:特征通常是可以量化的,这意味着它们可以被数值化,以便算法可以处理。例如,眼睛的大小可以被量化为图像中的像素尺寸。

  4. 独立性:理想情况下,特征之间应该是相对独立的,这样每个特征都能提供独特的信息,避免冗余。

  5. 选择性:在构建模型之前,通常需要从原始数据中选择或提取最有用的特征。这个过程称为特征选择或特征工程。

在图像识别中,特征可以是像素值、颜色直方图、纹理描述符、形状描述符等。这些特征被用来训练机器学习模型,使其能够识别和区分不同的图像内容。

如下图所示:

一句话概括:特征就是用来识别一类事物或一个事物的属性或变量。

什么是模型

在机器学习和人工智能领域,"模型"(Model)是指从数据中学习得到的算法或数学结构,它能够对数据进行预测或决策。模型是对现实世界问题的一种抽象和简化,它通过分析输入数据(特征)来预测输出结果(标签或值)。以下是模型的几个关键概念:

  1. 学习:模型通过学习过程从数据中提取信息。这通常涉及到调整模型的参数,以最小化预测结果与实际结果之间的差异。

  2. 训练:训练模型是指使用已知数据(训练集)来调整模型参数的过程。在训练过程中,模型会尝试找到最佳参数,以便能够准确地预测或分类。

  3. 泛化:一个良好的模型不仅在训练数据上表现良好,而且能够对新的、未见过的数据(测试集)进行准确预测,这称为模型的泛化能力。

  4. 过拟合:如果模型在训练数据上表现得非常好,但在新数据上表现不佳,这可能是因为模型过于复杂,捕捉到了训练数据中的噪声,这种现象称为过拟合。

  5. 欠拟合:如果模型在训练数据上的表现就不好,那么它可能过于简单,无法捕捉到数据中的模式,这种现象称为欠拟合。

  6. 评估:模型的评估是通过在独立的测试集上测试模型的性能来进行的。常用的评估指标包括准确率、召回率、F1分数、均方误差等。

  7. 类型:模型可以是多种类型的,包括线性回归、逻辑回归、决策树、随机森林、支持向量机、神经网络等。

在图像识别中,模型可能是指一个能够识别图像中猫的神经网络,它通过学习大量的猫的图片特征来训练,以便能够准确地识别新的图片中的猫。

如下图所示,我们构建了英国短毛猫模型、波斯猫模型、孟加拉猫模型、家猫的模型。这些结合在一起,就构成了模型库。

我们有了这些模型,不仅仅能够识别猫,还能够识别是什么猫。类似如下图所示:

一句话概括:模型就是用来识别一类事物或一个事物的算法或数据结构。

数据就是生产力

俗话说,巧妇难为无米之炊。数据的重要性不言而喻,好的数据能够让AI的功能更为强大的精准。

上图用一个猎豹的图片作为输入,告诉计算机说这是猫,显然这个是错的。这样计算机根据识别和提取算法后,构建出来的猫的模型就是错的。所以,数据的就是生产力,特别是高质量的数据,对于AI来说是非常重要的原材料,没有好的原材料,是不可能有好识别质量和模型的。

一句话概述:数据是一切的基础,特别是高质量的数据,更是高效的生产力!

什么是通用大模型和私有模型

在人工智能(AI)领域,"通用大模型"(General Large Model)和"私有模型"(Private Model)是两种不同的模型部署和使用方式,它们在数据使用、模型泛化能力、定制化程度等方面有所区别。以下是对这两种模型的解释,以及按照猫的案例进行的举例:

通用大模型
  • 定义:通用大模型是指由大型科技公司或研究机构开发,经过大量数据训练,具有广泛泛化能力的模型。这些模型通常在多个领域和任务上都有良好的表现。
  • 特点
    • 大规模数据训练:使用大量多样化的数据进行训练,以提高模型的泛化能力。
    • 广泛适用性:能够处理多种任务,如图像识别、自然语言处理等。
    • 公开可用:通常对公众开放,可以通过API调用或下载模型权重使用。
  • 举例:在猫的案例中,一个通用大模型可能是一个经过数百万张不同种类猫的图片训练的图像识别模型。这个模型能够识别各种品种的猫,包括英国短毛猫、波斯猫、孟加拉猫和暹罗猫等。
私有模型
  • 定义:私有模型是指为特定组织、企业或个人定制开发的模型,它们通常在特定的数据集上进行训练,以满足特定的业务需求或偏好。
  • 特点
    • 定制化训练:使用特定领域的数据进行训练,以提高模型在该领域的性能。
    • 专属使用:通常不对外公开,只有模型的所有者或授权用户才能使用。
    • 高度定制:可以根据特定的业务需求进行定制,如识别特定品种的猫或特定环境下的猫。
  • 举例:在猫的案例中,私有模型可能是一个只为识别特定品种的猫(如英国短毛猫)而训练的模型。这个模型可能使用了大量的英国短毛猫的图片进行训练,以提高识别这一特定品种猫的准确性。私有模型可能由猫舍、宠物店或猫类应用程序开发者拥有和使用。

比较

  • 数据使用:通用大模型使用广泛收集的数据,而私有模型使用特定领域的数据。
  • 泛化能力:通用大模型在多种任务上具有较好的泛化能力,私有模型则在特定任务上表现更佳。
  • 定制化程度:私有模型比通用大模型更具有定制化特点,能够满足特定用户的需求。
  • 可访问性:通用大模型通常对公众开放,私有模型则限于特定用户或组织。

在实际应用中,选择通用大模型还是私有模型,取决于具体的业务需求、数据可用性以及对模型性能的期望。

给大家举一个非常简单例子:

模型库的应用-为什么摄像头可以识别火灾

近年来,大家是否有感觉,摄像头识别火灾后主动报警,门禁的人脸识别等等的应用越来越来。

为什么之前没有,但是现在会应用的这么多呢?有的时候一些硬件需要固件升级,到底升级的是什么呢?

设么是固件呢?

固件(Firmware)是嵌入在硬件设备中的软件,它为设备提供了最基本的功能和控制。固件通常存储在硬件设备的非易失性存储器中,如ROM(只读存储器)、EPROM(可擦写可编程只读存储器)或Flash存储器,这使得固件即使在断电后也能保持其程序和数据。

我们之前说过的特征库,就是将火、烟和人脸的特征库,存储在摄像头的固件中。然后摄像头的有芯片,可以通过画面,从画中提取到相关特征,通过算法识别特征,通过匹配算法匹配火、烟和人脸的特征库,如果命中就识别到了火、烟和人脸,这样可以进行下部处理和操作。

所以,从这个里面来看,大家就知道,好的特征库、识别和匹配算法,还要芯片计算能力足够,摄像头的存储能力足够,基于边缘计算,是不是让摄像头可以精准的具备识别任何物体的能力,这样的摄像头是非常有科技含量的。

因此,通过摄像头的固件设计,模型库和算法就可以不断更新,加上算力足够,就可以有更多的应用。

关于AI底层逻辑的分析

上图展示了人工智能(AI)的四个关键组成部分:数据、算法、模型和海量存储,以及它们如何共同构成算力,从而驱动AI的发展。以下是对图片中每个部分的解释:

  1. 数据

    • 被描述为生产力的源泉。高质量的数据对于提高生产效率至关重要。
    • 在AI领域,数据是训练机器学习模型的基础,高质量的数据可以加快AI识别和应用的能力。
  2. 算法

    • 算法是AI的核心,涉及到人才的竞争。算法包括特征提取、模型构建等,这些都是时间和人才经验的积累。
    • 通用性AI、行业专用型AI和细分领域AI都是由多种算法和应用模型组成的集合体。
  3. 模型

    • 模型是算法的具体实现,用于从数据中学习并做出预测或决策。
    • 模型的质量和性能直接影响AI应用的效果。
  4. 海量存储

    • 提供了存储大量数据的能力,这些数据是AI训练和应用的基础。
    • 高性能的存储介质对于提高AI的生产力至关重要。
  5. 算力

    • 被比喻为AI的底层驱动力,类似于汽车的动力引擎。
    • 算力是处理海量数据、执行复杂算法和模型训练所需的计算能力。
    • 芯片产业的发展是算力提升的关键,也是国家间竞争的底层逻辑。

AI的发展不仅依赖于数据和存储,还需要强大的算法和算力支持。这些组成部分共同构成了AI的基础设施,是推动AI进步和应用的关键因素。同时,图片也暗示了在AI领域,数据和算力的重要性,以及它们在国家竞争力中的战略地位。

另外,通过以上的了解,其实大家可理解了AI算法+模型的核心人才为什么会有如此高的工资。

同时大家也理解了,芯片公司英伟达为什么会在AI的浪潮中,市值不断被刷新。因为芯片本质上提供的就是算力。

同时,大家也理解了,为什么AI的通用大模型,一般的小公司是没有办法来构建的,因为从数据、人才以及资源的投入都是巨大的。中小公司更多是结合自己的业务,在自己的领域内,通过不断的垂直的业务的积累,不断完善算法和模型,从而在某个领域内做到最好。

写在最后的话

人工智能(AI)的底层逻辑可概括为:以数据为基础,通过算法构建模型,借助算力实现智能决策和问题解决。数据是AI的原材料,高质量数据确保模型训练准确;算法是AI的核心,涵盖特征提取、模型构建等关键环节,是人才和经验的结晶;

模型是从数据中学习得到的算法或数学结构,用于预测或决策;算力是AI的驱动力,强大的算力支撑复杂算法的执行和海量数据的处理。

此外,AI模型分为通用大模型和私有模型,前者泛化能力强、公开可用,后者定制化程度高、专属使用。在实际应用中,如摄像头智能识别,依赖于特征库、算法和芯片算力的协同工作,实现精准识别和响应。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值