“傻瓜”学计量——双重差分DID 2 (回归模型中的传统DID)

本文详细阐述了如何使用回归模型进行双重差分法,强调了处理行为效果的系数计算,以及为何需要添加控制变量来处理时间效应和多重共线性问题。同时,文中提到处理行为发生前后的交互项系数检验标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提纲:

1.如何使用回归模型进行双重差分法

2.回归可以添加控制变量

一、如何使用回归模型进行双重差分法

Yit 因变量:处理行为的效用对象。(i代表效用对象的主体,t代表时间)

T  自变量 :时间变量,0-1变量。处理行为发生之前取0,处理行为发生之后取1。

D 处理组变量,0-1变量;非处理变量取0;处理组,取1。

D✖T 交互项,对应系数为研究的”处理行为的效果”。只有再观测值是处理行为发生之后,且,观测值属于处理组的时候,才取1,其他情况全取0。 

对应的系数\beta3就反映了处理行为的效果,是我们要重点关注的部分。理由如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值