单头注意力机制(SHSA)详解

定义与原理

单头注意力机制是Transformer模型中的核心组件之一,它通过模拟人类注意力选择的过程,在复杂的输入序列中识别和聚焦关键信息。这种方法不仅提高了模型的性能,还增强了其解释性,使我们能够洞察模型决策的原因。

单头注意力机制的工作流程主要包括以下几个步骤:

  1. 生成查询、键和值向量 :接收输入序列,通过三个不同的线性变换(或全连接层)生成Q、K、V向量。

  2. 计算注意力分数 :计算查询向量与所有键向量之间的点积,得到注意力分数矩阵。

  3. 缩放注意力分数 :为防止点积结果过大,通常将分数除以键向量维度的平方根。

  4. 归一化注意力分数 :应用softmax函数对注意力分数矩阵进行归一化,得到注意力权重矩阵。

  5. 加权求和 :使用归一化后的注意力权重对值向量进行加权求和,得到最终输出。

值得注意的是,单头注意力机制的一个重要特点是其 计算效率 。相比多头注意力,它只需要进行一次注意力计算,减少了计算复杂度。然而ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值