基于当地地理坐标系(NED)的导航方程

       基于当地地理坐标系进行惯性导航计算时, 地心地固坐标系(ECEF)系被作为参考系,当地地理坐标系(NED)构成投影坐标系。利用载体系到导航系的方向余弦阵C_{b}^{n};表示姿态速度则表示为载体相对于地心地固坐标系(ECEF)的速度在导航系中的投影v_{eb}^{n}位置以曲线位置的形式表示(大地纬度L_{b} 、经度 \lambda _{b}以及大地高度h_{b }。上述位置结果通常利用速度积分直接获取,而不是从笛卡儿直角坐标系转换得到。基于当地地理坐标系导航方程的优势是导航计算结果用户可以直接使用,但相较于ECI和ECEF系中进行导航计算增加了复杂度,投影坐标系和参考坐标系之间的姿态关系取决于载体位置。

 

姿态更新

                                  \dot{C}_{b}^{n}=C_{b}^{n}\Omega_{nb}^{b} =C_{b}^{n}(\Omega_{ib}^{b}-\Omega_{in}^{b})=C_{b}^{n}\Omega_{ib}^{b}-C_{b}^{n}(\Omega_{ie}^{b}+\Omega_{en}^{b})

                                        =C_{b}^{n}\Omega_{ib}^{b}-C_{b}^{n}(\Omega_{ie}^{b}+\Omega_{en}^{b})C_{n}^{b}C_{b}^{n}=C_{b}^{n}\Omega_{ib}^{b}-(\Omega_{ie}^{n}+\Omega_{en}^{n})C_{b}^{n}

其中:\Omega_{ie}^{n}为地球自转角速率在导航系上的投影,\Omega_{en}^{n}为载体运动导致的导航系对地球系旋转角速度在导航系上的投影。

                                               \Omega_{ie}^{n}=\omega _{ie}\left ( \begin{matrix} 0 & sinL_{b}& 0\\ -sinL_{b} & 0 & -cosL_{b} \\ 0 & cosL_{b} & 0 \end{matrix} \right )

                                                     \Omega_{en}^{n}=\left ( \begin{matrix} 0 & -\omega _{en,z}^{n}& \omega _{en,y}^{n}\\ \omega _{en,z}^{n}& 0 & -\omega _{en,x}^{n} \\ -\omega _{en,y}^{n} & \omega _{en,x}^{n}& 0 \end{matrix} \right )

                                                   \omega _{en}^{n}=\left ( \begin{matrix} v_{eb,E}^{n}/(R_{E}(L_{b})+h_{b})\\ -v_{eb,N}^{n}/(R_{N}(L_{b})+h_{b}) \\ -v_{eb,E}^{n} tanL_{b}/(R_{E}(L_{b})+h_{b}) \end{matrix}\right )

比力坐标转换

                                                           f_{ib}^{n}(t)=C_{b}^{n}(t)f_{ib}^{b}(t)               

速度更新

当地地理坐标系计算速度更新时,速度的投影坐标系和参考坐标系不一致。当地地理坐标系速度如下:

                                                             v_{eb}^{n}=C_{e}^{n}v_{eb}^{e}

微分得到:

                                                      \dot{v}_{eb}^{n}=\dot{C}_{e}^{n}v_{eb}^{e}+C_{e}^{n}\dot{v}_{eb}^{e}

                                                          \dot{C}_{e}^{n}=-\Omega _{en}^{n}C_{e}^{n}

                                                          \dot{v}_{eb}^{e}=a_{eb}^{e}=\ddot{r}_{eb}^{e} (r_{eb}^{e}=r_{ib}^{e}-r_{ie}^{e}(r_{ie}^{e}=0)=r_{ib}^{e})\Rightarrow \dot{v}_{eb}^{e}=\ddot{r}_{ib}^{e}

                                                          \ddot{r}_{ib}^{e}=-\Omega _{ie}^{e}\Omega _{ie}^{e}r_{ib}^{e}-2\Omega _{ie}^{e}\dot{r}_{ib}^{e}-\dot\Omega _{ie}^{e}{r}_{ib}^{e}-a_{ib}^{e}=-\Omega _{ie}^{e}\Omega _{ie}^{e}r_{ib}^{e}-2\Omega _{ie}^{e}\dot{r}_{ib}^{e}-a_{ib}^{e}

得到:

                                                          \dot{v}_{eb}^{e}=-\Omega _{ie}^{e}\Omega _{ie}^{e}r_{eb}^{e}-2\Omega _{ie}^{e}v_{eb}^{e}-a_{ib}^{e}

得到:

                                                   \dot{v}_{eb}^{n}=-\Omega _{en}^{n}v_{eb}^{n}+C_{e}^{n}(-\Omega _{ie}^{e}\Omega _{ie}^{e}r_{eb}^{e}-2\Omega _{ie}^{e}v_{eb}^{e}-a_{ib}^{e})

                                                         =-\Omega _{ie}^{n}\Omega _{ie}^{n}r_{eb}^{n}-(\Omega _{en}^{n}+2\Omega _{ie}^{n})v_{eb}^{n}+a_{ib}^{n}

载体的加速度a_{ib}^{n}是测量的比例和引力加速度之和,重力加速度是引力加速度和向心加速度之和,于是有:

                                                   \dot{v}_{eb}^{n}=f_{ib}^{n}+g_{b}^{n}(L_{b},h_{b})-(2\Omega _{ie}^{n}+\Omega _{en}^{n})v_{eb}^{n}

位置更新

        沿曲线的速度除以曲线的曲率半径等于曲线所对应角度的时间导数,曲线位置的时间微分是载体相对地球坐标系的速度在当地地理坐标系上投影的线性函数:

                                                                       \dot{L}_{b}=\frac{v_{eb,N}^{n}}{R_{N}(L_{b})+h_{b}}

                                                                  \dot{\lambda }_{b}=\frac{v_{eb,E}^{n}}{(R_{N}(L_{b})+h_{b})cosL_{b}}

                                                                               \dot{h}_{b}=-v_{eb,D}^{n}

算法设计时,注意应先计算高度,再计算纬度,最后计算经度,顺序不能颠倒。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值