假设惯性系中的导航方程为:
{
r
˙
i
=
V
i
V
˙
i
=
C
e
i
C
b
e
f
b
+
C
e
i
g
e
R
˙
b
i
=
R
b
i
Ω
i
b
b
\begin{cases} \dot r^i = V^i \\ \dot V^i = C_e^i C_b^e f^b + C_e^i g^e \\ \dot R_b^i = R_b^i \Omega_{ib}^b \end{cases}
⎩⎪⎨⎪⎧r˙i=ViV˙i=CeiCbefb+CeigeR˙bi=RbiΩibb
Ω i b b \Omega_{ib}^b Ωibb为 ω i b b \omega_{ib}^b ωibb的反对称阵。
为推得地球系上的导航方程,下面再推导两个方程:
1、坐标变换矩阵微分方程
假设e系有一固定矢量
r
e
r^e
re(注意这个固定矢量是常值向量),变换至i系得到
r
i
r^i
ri,
r
i
=
C
e
i
r
e
r^i=C_e^i r^e
ri=Ceire
求导:
r
˙
i
=
C
˙
e
i
r
e
\dot r^i = \dot C_e^i r^e
r˙i=C˙eire
而由于速度等于角速度乘矢径:
r
˙
i
=
ω
i
×
r
i
=
Ω
i
r
i
=
C
e
i
Ω
i
e
e
C
i
e
r
i
\dot r^i = \omega^i \times r^i = \Omega^i r^i = C_e^i \Omega_{ie}^e C_i^e r^i
r˙i=ωi×ri=Ωiri=CeiΩieeCieri
带入上式:
C
e
i
Ω
i
e
e
C
i
e
r
i
=
C
˙
e
i
r
e
C_e^i \Omega_{ie}^e C_i^e r^i = \dot C_e^i r^e
CeiΩieeCieri=C˙eire
即:
(1)
C
˙
e
i
=
C
e
i
Ω
i
e
e
\tag{1} \dot C_e^i = C_e^i \Omega_{ie}^e
C˙ei=CeiΩiee(1)
2、向量变换关系式
假设任意a系中的位置矢量(注意不是常值向量),变换到惯性系有:
r
i
=
C
a
i
r
a
r^i = C_a^i r^a
ri=Caira
求导:
r
˙
i
=
C
˙
a
i
r
a
+
C
a
i
r
˙
a
\dot r^i = \dot C_a^i r^a + C_a^i \dot r^a
r˙i=C˙aira+Cair˙a
顾及公式(1):
r
˙
i
=
C
a
i
Ω
i
a
a
r
a
+
C
a
i
r
˙
a
\dot r^i = C_a^i \Omega_{ia}^a r^a + C_a^i \dot r^a
r˙i=CaiΩiaara+Cair˙a
再求导:
r
¨
i
=
C
˙
a
i
Ω
i
a
a
r
a
+
C
a
i
Ω
˙
i
a
a
r
a
+
C
a
i
Ω
i
a
a
r
˙
a
+
C
˙
a
i
r
˙
a
+
C
a
i
r
¨
a
\ddot r^i = \dot C_a^i \Omega_{ia}^a r^a + C_a^i \dot\Omega_{ia}^a r^a + C_a^i \Omega_{ia}^a \dot r^a + \dot C_a^i \dot r^a + C_a^i \ddot r^a
r¨i=C˙aiΩiaara+CaiΩ˙iaara+CaiΩiaar˙a+C˙air˙a+Cair¨a
顾及公式(1):
(2)
r
¨
i
=
C
a
i
Ω
i
a
a
Ω
i
a
a
r
a
+
C
a
i
Ω
˙
i
a
a
r
a
+
C
a
i
Ω
i
a
a
r
˙
a
+
C
a
i
Ω
i
a
a
r
˙
a
+
C
a
i
r
¨
a
=
C
a
i
(
Ω
i
a
a
Ω
i
a
a
r
a
+
Ω
˙
i
a
a
r
a
+
Ω
i
a
a
r
˙
a
+
Ω
i
a
a
r
˙
a
+
r
¨
a
)
=
C
a
i
(
r
¨
a
+
2
Ω
i
a
a
r
˙
a
+
Ω
˙
i
a
a
r
a
+
Ω
i
a
a
Ω
i
a
a
r
a
)
\tag{2} \begin{aligned} \ddot r^i &= C_a^i \Omega_{ia}^a \Omega_{ia}^a r^a + C_a^i \dot\Omega_{ia}^a r^a + C_a^i \Omega_{ia}^a \dot r^a + C_a^i \Omega_{ia}^a \dot r^a + C_a^i \ddot r^a \\ &= C_a^i(\Omega_{ia}^a \Omega_{ia}^a r^a + \dot\Omega_{ia}^a r^a + \Omega_{ia}^a \dot r^a + \Omega_{ia}^a \dot r^a + \ddot r^a) \\ &= C_a^i(\ddot r^a + 2\Omega_{ia}^a \dot r^a + \dot\Omega_{ia}^a r^a + \Omega_{ia}^a \Omega_{ia}^a r^a) \end{aligned}
r¨i=CaiΩiaaΩiaara+CaiΩ˙iaara+CaiΩiaar˙a+CaiΩiaar˙a+Cair¨a=Cai(ΩiaaΩiaara+Ω˙iaara+Ωiaar˙a+Ωiaar˙a+r¨a)=Cai(r¨a+2Ωiaar˙a+Ω˙iaara+ΩiaaΩiaara)(2)
下面进行惯性系导航方程向地球系的转换:
将公式(2)中的a系换为e系,那么有
Ω
˙
i
e
e
\dot\Omega_{ie}^e
Ω˙iee等于0(地球自转角速度作为常数),便有:
(3)
r
¨
i
=
C
e
i
(
r
¨
e
+
2
Ω
i
e
e
r
˙
e
+
Ω
i
e
e
Ω
i
e
e
r
e
)
\tag{3} \ddot r^i = C_e^i(\ddot r^e + 2\Omega_{ie}^e \dot r^e + \Omega_{ie}^e \Omega_{ie}^e r^e)
r¨i=Cei(r¨e+2Ωieer˙e+ΩieeΩieere)(3)
而:
(4)
r
¨
i
=
f
i
+
G
i
=
C
e
i
(
C
b
e
f
b
+
G
e
)
\tag{4} \ddot r^i = f^i + G^i = C_e^i(C_b^e f^b+G^e)
r¨i=fi+Gi=Cei(Cbefb+Ge)(4)
其中
f
b
f^b
fb为比力向量,
G
e
G^e
Ge为地球引力加速度向量;
比较公式(3)和公式(4)可得:
C
b
e
f
b
+
G
e
=
r
¨
e
+
2
Ω
i
e
e
r
˙
e
+
Ω
i
e
e
Ω
i
e
e
r
e
C_b^e f^b+G^e = \ddot r^e + 2\Omega_{ie}^e \dot r^e + \Omega_{ie}^e \Omega_{ie}^e r^e
Cbefb+Ge=r¨e+2Ωieer˙e+ΩieeΩieere
r
¨
e
=
C
b
e
f
b
−
2
Ω
i
e
e
r
˙
e
+
G
e
−
Ω
i
e
e
Ω
i
e
e
r
e
\ddot r^e = C_b^e f^b- 2\Omega_{ie}^e \dot r^e + G^e - \Omega_{ie}^e \Omega_{ie}^e r^e
r¨e=Cbefb−2Ωieer˙e+Ge−ΩieeΩieere
由于地球系中重力向量=引力加速度向量+离心加速度矢量,即:
g
e
=
G
e
−
Ω
i
e
e
Ω
i
e
e
r
e
g^e = G^e - \Omega_{ie}^e \Omega_{ie}^e r^e
ge=Ge−ΩieeΩieere
所以:
r
¨
e
=
C
b
e
f
b
−
2
Ω
i
e
e
r
˙
e
+
g
e
=
V
˙
e
\ddot r^e = C_b^e f^b- 2\Omega_{ie}^e \dot r^e + g^e= \dot V^e
r¨e=Cbefb−2Ωieer˙e+ge=V˙e
结合:
r
˙
e
=
V
e
\dot r^e = V^e
r˙e=Ve
C ˙ b e = C b e Ω e b b = C b e ( Ω i b b − Ω i e b ) \dot C_b^e = C_b^e \Omega_{eb}^b = C_b^e(\Omega_{ib}^b - \Omega_{ie}^b) C˙be=CbeΩebb=Cbe(Ωibb−Ωieb)
得到地球系中的导航方程:
{
r
˙
e
=
V
e
V
˙
e
=
C
b
e
f
b
−
2
Ω
i
e
e
r
˙
e
+
g
e
C
˙
b
e
=
C
b
e
(
Ω
i
b
b
−
Ω
i
e
b
)
\begin{cases} \dot r^e = V^e\\ \dot V^e=C_b^e f^b- 2\Omega_{ie}^e \dot r^e + g^e\\ \dot C_b^e = C_b^e(\Omega_{ib}^b - \Omega_{ie}^b) \end{cases}
⎩⎪⎨⎪⎧r˙e=VeV˙e=Cbefb−2Ωieer˙e+geC˙be=Cbe(Ωibb−Ωieb)
参考自:《GPS/INS组合导航定位及其应用》,董绪荣
资源页中下载:042分享资料下载地址汇总