学术篇 | 面向分类的脑电接口Fuzzy-Rough特征选择

本文探讨了基于脑电图(EEG)的脑机接口(BCI)技术中,如何通过Fuzzy-Rough特征选择方法提高分类效率和准确性。面对EEG信号的不稳定性和噪声,研究采用了Fuzzy-Rough集理论来筛选出最具信息量的特征,并结合多种分类器进行实验分析,验证了该方法的有效性。
摘要由CSDN通过智能技术生成

摘要

脑电图(EEG)信号的高质量分类是在实际应用中使用基于EEG的脑机接口(BCI)技术的先决条件。由于脑电信号不稳定,信噪比差,并受到各种外部电磁波的污染,提取脑电信号的信息特征进行分类并不容易。一种可能的方法是从不同的渠道和角度集成功能以捕获更多信息,但是,更多功能需要更多的计算时间和计算机内存。此外,其中一些功能对分类没有多大作用。
在本文中,我们采用Fuzzy-Rough选择方法从候选特征中选择信息量最大的特征,多个分类器用于根据所选特征对EEG信号进行分类,实验分析表明了该方法的有效性和效率。

1 引言

脑机接口(BCI)为用户提供了不依赖于大脑正常的周围神经和肌肉输出通道的通信和控制通道,BCI框架由信号采集,特征提取,特征转换(也称为分类)和设备输出命令等组成,如图1所示。
目前已经开发了各种技术来采集BCI系统的输入信号,例如正电子发射断层扫描(PET),功能磁共振成像(fMRI),脑磁图(MEG)和脑电图(EEG),其中,EEG可能是开发实用BCI系统的最流行方法。
在这里插入图片描述
图1 BCI框架

从分析的观点来看,脑电特征提取方法可大致分为三类,即时域,频域和时频。时域特征显示信号如何随时间变化,而频域特征显示多少信号位于一定频率范围内的每个给定频带内,相反,时频分析提供了在时间和频率上均表示的信号视图(被视为时间的函数)。

通常,使用不同的提取方法进行脑电图分析可能涉及许多特征(例如,信号频率分布,频带功率特征),受脑科学发展的限制,研究人员不一定知道特定特征的确切含义。因此,为了确保不遗漏有用的信息,天真的想法是同时使用各种功能,可以预期通过增加功能的数量,增加足够的信息进行分类的可能性也会增加。

但是,当训练数据集规模不会随着添加的更多功能而增加时,肯定不是正确的。高维特征向量可能会增加分类器发现无效模式的机会。如[8]中所述,更多的特征可能会在特征测量过程中产生更多的噪声,甚至会降低整体模型的准确性。

此外,使用更多功能意味着所需数据大小的增加,这增加了计算的复杂性。解决此问题的合理方法是减少特征的数量,以使剩余的信息丰富,这可能导致更高的未来处理性能。特征的减少不仅简化了数据集,而且保持了分类的准确性。

Pawlak [12]提出的Rough集理论是一种有效的特征缩减工具,可以保留信息内容,同时减少涉及的知识量。但是,Rough集只能处理包含离散值(名义变量)的数据集,而不能处理包含实值属性的数据集。

为了克服这一困难,Jensen和Shen [9]提出了一种Fuzzy-Rough特征选择方法,在这项研究中,使用Fuzzy-Rough法对原始特征进行预处理。为了显示Fuzzy-Rough特征选择方法的有效性,使用了几种不同的分类器来处理具有原始特征和所选特征的同一数据集。

在本文的第2节介绍了用于特征提取的技术,包括时域特征,频域特征和时频特征,第3节重点介绍了用于特征选择的Fuzzy-Rough集理论,几个分类器的处方如第4节所示,实验分析在第5节中进行了说明,以说明所提出的理论框架的有效性,最后,我们在第6节中提供结论性意见和今后的工作。

2 特征提取

提取一组合适的特征是一项挑战,因为大脑信号中的有用信息隐藏在高噪声的环境中,关于EEG信号特征提取方法的研究很多,在本节中,将回顾几种方法。

2.1原始信号数据集
原始信号数据集是BCI竞赛II(http://bb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值