DeepSeek vs. Qwen 大模型编程能力比拼,谁更适合作为你的 AI 辅助编程助手?

微信公众号:老牛同学

公众号标题:DeepSeek vs. Qwen 大模型编程能力比拼,谁更适合作为你的 AI 辅助编程助手?

公众号链接:DeepSeek vs. Qwen 大模型编程能力比拼,谁更适合作为你的 AI 辅助编程助手?

整个春节假期,DeepSeek 与《哪吒 2》的消息接连不断,看完我总有种莫名的激动。一边是 DeepSeek 在基础技术领域的深耕细作,另一边则是《哪吒 2》对用户产品的精心打磨,两者多年来的默默努力和不懈追求,终于在今年春节实现了一飞冲天、一鸣惊人的突破!

老牛同学作为一名长期使用 Qwen 大模型Token服务的用户,目前余额所剩无几了,对购买的服务主要就三个追求:价格效率效果

接下来,老牛同学将根据自己使用大模型的实际情况,对DeepSeekQwen分别进行以下几个方面的测验,哪个得分高,老牛同学后续就用哪个的 Token 服务。

  1. 价格:说实话,现在大模型厂商都很卷,价格都很实惠。同时,Token 数量与分词算法相关,因此价格只要不超过 50%,老牛同学觉得都差多不。
  2. 效率:敢作为服务拿出来卖,老牛同学觉得效率都不会差;同时,模型产出内容不一样,这里就没有一个严格标准,因此暂不做比较。
  3. 效果,这是老牛同学最关心的点,只有满足需求的服务,才是需要的服务。编程是老牛同学使用大模型服务最多的地方,因此将通过Web 页面Python微信小程序Cocos 小游戏这 4 个方面编程结果进行评测。
  • 为了消除历史消息对上下文的影响,每次编程老牛同学都使用全新的会话。
  • 本次编程评测编程代码结果,老牛同学全部上传共享,大家可通过打开“老牛同学”微信小程序->点击“更多”Tab->“源代码”获取下载链接进行复验:

微信小程序:老牛同学

Qwen 和 DeepSeek 服务价格ÿ

### 比较 DeepSeek Qwen 模型用于后端开发 对于后端开发而言,选择合适的自然语言处理(NLP)模型至关重要。以下是针对 DeepSeek Qwen 这两个模型的具体分析。 #### 性能表现 DeepSeek 展现出了卓越的语言理解生成能力,在多项基准测试中取得了优异的成绩[^1]。而 Qwen 同样具备强大的性能,特别是在多轮对话管理复杂语境理解方面表现出色[^2]。 #### 集成难度 就集成到现有系统而言,DeepSeek 提供了详尽的API文档支持工具,使得开发者可以轻松地将其功能嵌入应用程序之中[^3]。相比之下,Qwen 的接口设计加简洁直观,减少了初次使用的上手时间成本[^4]。 #### 应用场景适配度 当涉及到特定领域如金融、医疗等行业应用时,DeepSeek 可以通过定制化训练来好地满足行业需求;而对于通用类型的Web服务或移动App后台支持,则可能发现Qwen 加灵活易用[^5]。 ```python # 示例代码展示如何调用不同框架下的预训练模型 from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer def load_model(model_name): tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) nlp_pipeline = pipeline('text-classification', model=model, tokenizer=tokenizer) return nlp_pipeline deepseek_classifier = load_model("deepseek-model-name") # 替换为实际名称 qwen_classifier = load_model("qwen-model-name") # 替换为实际名称 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值