文章目录
前言
基于无穷级数敛散性判别。
无穷级数
正项级数
一、定义
也就是每一项 a n a_n an都为非负的级数=_=
二、特点
1.部分和 S n S_n Sn单调递增。
2. S n S_n Sn有界 与 级数收敛 为 充分必要条件。
正项级数的敛散性判别方法
一、比较判别法
级数 ∑ n = 1 ∞ x n \sum_{n=1}^\infty x_n ∑n=1∞xn 与 级数 ∑ n = 1 ∞ y n \sum_{n=1}^\infty y_n ∑n=1∞yn 满足 0 <= x n x_n xn <= y n y_n yn ,那么
1.若级数 ∑ n = 1 ∞ x n \sum_{n=1}^\infty x_n ∑n=1∞xn 发散, 则级数 ∑ n = 1 ∞ y n \sum_{n=1}^\infty y_n ∑n=1∞