数学分析(十二)-数项级数2-正项级数-敛散性判别法1:一般判别原则【正项级数:各项都是非负数的级数】【比较原则:设uₙ≤vₙ,若Σvₙ收敛则Σuₙ收敛,若Σuₙ发散则Σvₙ发散】

本文介绍了正项级数的概念及其在数项级数收敛性判断中的应用。通过定理12.5和定理12.6的比较原则,阐述了如何判断两个正项级数的敛散性。举例说明了如何利用比较原则判断级数如 ∑n2−n+11 和 ∑2n−n1 的收敛性。
摘要由CSDN通过智能技术生成

若数项级数各项的符号都相同, 则称它为同号级数. 对于同号级数, 只需研究各项都是由非负数组成的级数—称为正项级数.

如果级数的各项都是非正数, 则它乘以 -1 后就得到一个正项级数, 它们具有相同的敛散性.

注 这样定义正项级数更一般, 更便于讨论. 实际上 u n = 0 u_{n}=0 un=0的项不影响级数的敛散性, 在判别正项级数敛散性时可自然排除.

由于级数与其部分和数列具有相同的敛散性, 所以首先得到如下定理.

定理 12.5

正项级数 ∑ u n \sum u_{n} un 收敛的充要条件是: 部分和数列 { S n } \left\{S_{n}\right\} { Sn} 有界, 即存在某正数 M M M, 对一切正整数 n n n S n < M S_{n}<M Sn<M.


由于 u i ⩾ 0 ( i = 1 , 2 , ⋯   ) u_{i} \geqslant 0(i=1,2, \cdots) ui0(i=1,2,), 所以 { S n } \left\{S_{n}\right\} { Sn}是递增数列. 而单调数列收敛的充要条件是该数列有界 (单调有界定理 (定理2.9)). 这就证明了本定理的结论.

定理 12.6 (比较原则)

∑ u n \sum u_{n} un ∑ v n \sum v_{n} vn 是两个正项级数, 如果存在某正数 N N N, 对一切 n > N n>N n>N 都有

u n ⩽ v n , ( 1 ) u_{n} \leqslant v_{n}, \quad \quad(1) unvn,(1)

  • (i) 若级数 ∑ v n \sum v_{n} vn 收敛, 则级数 ∑ u n \sum u_{n} un 也收敛;
  • (ii) 若级数 ∑ u n \sum u_{n} un 发散,则级数 ∑ v n \sum v_{n} vn 也发散.


因为改变级数的有限项并不影响原有级数的敛散性, 因此不妨设不等式(1)对一切正整数都成立.

现分别以 S n ′ S_{n}^{\prime} Sn S n ′ ′ S_{n}^{\prime \prime} Sn′′ 记级数 ∑ u n \sum u_{n} un ∑ v n \sum v_{n} vn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值