数学分析(十二)-数项级数2-正项级数-敛散性判别法1:一般判别原则【正项级数:各项都是非负数的级数】【比较原则:设uₙ≤vₙ,若Σvₙ收敛则Σuₙ收敛,若Σuₙ发散则Σvₙ发散】

本文介绍了正项级数的概念及其在数项级数收敛性判断中的应用。通过定理12.5和定理12.6的比较原则,阐述了如何判断两个正项级数的敛散性。举例说明了如何利用比较原则判断级数如 ∑n2−n+11 和 ∑2n−n1 的收敛性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

若数项级数各项的符号都相同, 则称它为同号级数. 对于同号级数, 只需研究各项都是由非负数组成的级数—称为正项级数.

如果级数的各项都是非正数, 则它乘以 -1 后就得到一个正项级数, 它们具有相同的敛散性.

注 这样定义正项级数更一般, 更便于讨论. 实际上 u n = 0 u_{n}=0 un=0的项不影响级数的敛散性, 在判别正项级数敛散性时可自然排除.

由于级数与其部分和数列具有相同的敛散性, 所以首先得到如下定理.

定理 12.5

正项级数 ∑ u n \sum u_{n} un 收敛的充要条件是: 部分和数列 { S n } \left\{S_{n}\right\} { Sn} 有界, 即存在某正数 M M M, 对一切正整数 n n n S n < M S_{n}<M Sn<M.


由于 u i ⩾ 0 ( i = 1 , 2 , ⋯   ) u_{i} \geqslant 0(i=1,2, \cdots) ui0(i=1,2,), 所以 { S n } \left\{S_{n}\right\} { Sn}是递增数列. 而单调数列收敛的充要条件是该数列有界 (单调有界定理 (定理2.9)). 这就证明了本定理的结论.

定理 12.6 (比较原则)

∑ u n \sum u_{n} un ∑ v n \sum v_{n} vn 是两个正项级数, 如果存在某正数 N N N, 对一切 n > N n>N n>N 都有

u n ⩽ v n , ( 1 ) u_{n} \leqslant v_{n}, \quad \quad(1) unvn,(1)

  • (i) 若级数 ∑ v n \sum v_{n} vn 收敛, 则级数 ∑ u n \sum u_{n} un 也收敛;
  • (ii) 若级数 ∑ u n \sum u_{n} un 发散,则级数 ∑ v n \sum v_{n} vn 也发散.


因为改变级数的有限项并不影响原有级数的敛散性, 因此不妨设不等式(1)对一切正整数都成立.

现分别以 S n ′ S_{n}^{\prime} Sn S n ′ ′ S_{n}^{\prime \prime} Sn′′ 记级数 ∑ u n \sum u_{n} un ∑ v n \sum v_{n} vn

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型能的影响,建议进行参数敏感分析以获得最佳效果。
《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API计与测试**:讲解RESTful API的原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值