若数项级数各项的符号都相同, 则称它为同号级数. 对于同号级数, 只需研究各项都是由非负数组成的级数—称为正项级数.
如果级数的各项都是非正数, 则它乘以 -1 后就得到一个正项级数, 它们具有相同的敛散性.
注 这样定义正项级数更一般, 更便于讨论. 实际上 u n = 0 u_{n}=0 un=0的项不影响级数的敛散性, 在判别正项级数敛散性时可自然排除.
由于级数与其部分和数列具有相同的敛散性, 所以首先得到如下定理.
定理 12.5
正项级数 ∑ u n \sum u_{n} ∑un 收敛的充要条件是: 部分和数列 { S n } \left\{S_{n}\right\} { Sn} 有界, 即存在某正数 M M M, 对一切正整数 n n n 有 S n < M S_{n}<M Sn<M.
证
由于 u i ⩾ 0 ( i = 1 , 2 , ⋯ ) u_{i} \geqslant 0(i=1,2, \cdots) ui⩾0(i=1,2,⋯), 所以 { S n } \left\{S_{n}\right\} {
Sn}是递增数列. 而单调数列收敛的充要条件是该数列有界 (单调有界定理 (定理2.9)). 这就证明了本定理的结论.
定理 12.6 (比较原则)
设 ∑ u n \sum u_{n} ∑un 和 ∑ v n \sum v_{n} ∑vn 是两个正项级数, 如果存在某正数 N N N, 对一切 n > N n>N n>N 都有
u n ⩽ v n , ( 1 ) u_{n} \leqslant v_{n}, \quad \quad(1) un⩽vn,(1)
则
- (i) 若级数 ∑ v n \sum v_{n} ∑vn 收敛, 则级数 ∑ u n \sum u_{n} ∑un 也收敛;
- (ii) 若级数 ∑ u n \sum u_{n} ∑un 发散,则级数 ∑ v n \sum v_{n} ∑vn 也发散.
证
因为改变级数的有限项并不影响原有级数的敛散性, 因此不妨设不等式(1)对一切正整数都成立.
现分别以 S n ′ S_{n}^{\prime} Sn′ 和 S n ′ ′ S_{n}^{\prime \prime} Sn′′ 记级数 ∑ u n \sum u_{n} ∑un与 ∑ v n \sum v_{n} ∑vn