基于药效团的虚拟筛选技术发现全新转化因子β受体1拮抗剂

研究人员通过分析TGFβR1-BMS22复合物结构并结合已知抑制剂数据,构建了药效团模型A02和B10。这些模型用于虚拟筛选,找出了两种新的TGFβR1拮抗剂骨架。经过类药性和ADMET预测,化合物YXY01-03展现出良好的药物性质和潜在活性,可能比BMS22更安全,为肿瘤治疗研究提供了新方向。
摘要由CSDN通过智能技术生成

摘要:作为治疗恶性肿瘤的新药,转化生长因子β受体1(TGFβR1)拮抗剂获得了广泛关注。作者基于TGFβR1-BMS22复合物晶体结构文献报道了抑制剂数据构建了两个药效团模型A02和B10应用两个药效团模型,作者虚拟筛选了DruglikeDiverseMiniMaybridge和Zinc Drug-like数据库,发现了两种全新的TGFβR1拮抗剂骨架。并将筛选出的化合物经过类药五规则和ADMET性质预测最终化合物YXY01-03具有新颖的骨架,良好的药物性质,潜在的活性,可能比BMS22具有更高的安全性,这可能对进一步的研究有价值。

MaXFlow生物医药智能创新平台,由创腾科技自主研发,旨为不同领域的一线创新科技工作者提供一个合作共享的B-S架构平台。以数据自由,模型自由为理念,在结构模型与预测模型进行融合的基础上,实现模拟与AI需求的合并,为研发赋能。

药效团模型(Pharmacophore):是指药物活性分子中对活性起着重要作用的“药效特征元素”及其空间排列形式,可以认为是大量活性化合物共同的成药特征。基于药效团模型,科研人员可以进行快速的药物虚拟筛选工作,寻找结构新颖的活性分子;也可以解释化合物的构效关系,进行化合物的结构优化与改造;此外,还可以进行化合物靶标的识别,实现反向找靶。Discovery Studio中的Catalyst模块,是经典的药效团模型生成、验证及虚拟筛选的工具,可以基于配体、受体以及复合物结构进行定量、定性的药效团模型研究。

基于药效团的虚拟筛选技术发现全新转化因子β受体1拮抗剂

refMolecules. 2018 Oct 31;23(11). pii: E2824IF=3.06

链接: doi: 10.3390/molecules23112824

作为治疗恶性肿瘤的新药,转化生长因子受体1(TGFβR1)拮抗剂获得了广泛关注。作者首先对TGFβR1-BMS22复合物结构6B8Y应用DS_Receptor-Ligand Pharmacophore Genereation模块生成基于结构的药效团。然后收集了文献里17具有TGFβR1抑制活性的化合物,使用DS_Common Feature Pharmacophore Generation模块,生成基于配体的药效团。值得一提是,基于配体的药效团生成时分子构象是采用对接构象构建三维药效团模型。经过87个测试集分子和8677个诱导集分子共同测试两个药效团模型发现,A02B10表现更好,可以用于后续虚拟筛选。作者针对DruglikeDiverseMiniMaybridge和Zinc Drug-like数据库,发现了两种全新的TGFβR1拮抗剂骨架。并将筛选出的化合物经过类药五规则和ADMET性质预测最终化合物YXY01-03具有新颖的骨架,良好的药物性质,潜在的活性,可能比BMS22具有更高的安全性,这可能对进一步的研究有价值。

 

图一 筛选出的4个化合物与药效团模型A2的匹配图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值