基于对虚拟筛选结果挑选的规则----Sybyl

本文介绍了一种基于Sybyl软件的虚拟筛选策略,通过对接打分和结构评估来挑选高匹配度化合物。步骤包括TS>8.0筛选、Cscore评估、构型占比、平均分计算、分段分布、RMSD分析、相互作用分析、蛋白表面观察以及与原配体相似性的研究。最终,通过两轮筛选得到稳定性和相似性高的化合物结果,并对比了不同阶段的稳定性差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于对虚拟筛选结果挑选的规则----Sybyl

20161230 win7

  1. 根据对接打分Total Score,挑选TS>8.0分的化合物;

  2. 基于TS>8.0,从对接得到的构像(默认20个)中挑选Cscore≥4的化合物;

  3. 2.1 统计TS>8.0,CS≥4的构型所占的比例,如7/20;

  4. 2.2 计算这些构型的平均分;

  5. 2.3 统计这些构型在各个分段下的分布,如10-11分3个;

  6. 2.4 统计这些构型的RMSD值;

  7. 观察并记录这些构型与蛋白之间的相互作用,挑选出与主要残基作用的化合物;

  8. 生成蛋白surfaces,观察这些构型在surfaces中的趋势;

  9. 观察并记录这些构型与蛋白中原配体的相似性,如形状相似性,药效相似性,分子弯曲可改造性等;

  10. 综合以上参数,得到第一批结果result1;

  11. 将所得的结果得到一个表单,用相同的方法进行二次对接,排除TS低于8.0分的构型,得到第二批结果result2

  12. 对比result1和result2的各个化合物在各分段出现的稳定性,如result1中A化合物TS为11分,在result2中TS为8分,可考虑先排除;

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柒月⑩肆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值