薛定谔 | 用药效团模型筛选药物

本文详细介绍了如何在药效团模型中筛选药物,步骤包括选择配体来源、调整模型匹配度、配置筛选条件等,适合药物研发人员了解模型应用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

咱们文接上篇,用上次构建好的药效团模型筛选药物:

如上图所示,左击右端“H图标”,出现add to database creen , 鼠标左击,然后会出现下面的对话框:

对上图各块内容解读:

  • ① 选择配体分子来源:可以是来自导入软件workplace中的分子也可以是直接从本地文件直接读入。如果选择了Phase database,则需要在下方的框内点击add database,在这里添加要筛选的配体。
  • ② 可以选中不需要的药效团模型,删除之。
  • ③ 此栏信息规定了小分子和模型的匹配度。如可以改为3 of 4,意思是此药效团总共有4个特征元素,筛选的配体分子只要满足其中三个元素就可以被保留下来。
  • ④ 关于筛选过程更多设置。
### 药物筛选中使用机器学习的方法 在药物筛选过程中,机器学习技术被广泛应用来加速新药的研发过程并提高成功率。具体来说,在不同阶段可以应用各种类型的机器学习模型来进行高的数据处理和特征提取。 #### 数据预处理与特征工程 为了使原始化学结构信息能够输入到机器学习算法中,通常会先将其转换成计算机易于理解的形式——即分子指纹或描述符。这些表示方式捕捉到了化合物的关键属性,如原子组成、键合模式以及三维构象等特性[^1]。 #### 模型训练与验证 一旦获得了合适的表征形式之后,则可以选择适合的任务需求的监督式学习方法构建预测模型。对于分类任务(比如判断某个化合物是否具备成为潜在治疗剂的可能性),支持向量机(SVM)、随机森林(RF)和支持向量机(Deep Neural Networks, DNNs)都是常见的选项;而对于回归问题(估计IC50值或其他定量性质),则更多采用线性回归(LR),K近邻(KNN)或者梯度提升决策树(XGBoost)[^2]。 #### 实际应用场景实例 在一个具体的例子中提到过利用深度神经网络对多个公开可用的小分子库进行了虚拟筛选实验,旨在识别可能作用于特定靶标的新型抑制剂候选者。通过这种方式不仅大大减少了湿实验室工作的负担同时也提高了命中率。此外还有研究展示了如何借助集成学习框架完成大规模抗肿瘤活性物质挖掘的工作流程设计[^3]。 ```python from sklearn.ensemble import RandomForestClassifier from rdkit.Chem import AllChem import numpy as np def prepare_fingerprints(molecules): fps = [AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=1024) for mol in molecules] return np.array(fps) mols = [...] # 加载分子对象列表 X_train = prepare_fingerprints(mols) y_train = [...] # 对应标签数组 clf = RandomForestClassifier(n_estimators=100) clf.fit(X_train, y_train) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

药研猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值