从VAE到Diffusion生成模型详解(2):生成对抗网络GAN

本文详细介绍了生成对抗网络(GAN)的工作原理,包括生成器和判别器的角色,以及它们如何通过min-max游戏进行联合训练。文章还探讨了GAN的数学理论,如目标函数和优化过程,并讨论了GAN的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🤗关注公众号 funNLPer 白嫖畅读全文🤗

1. 生成对抗网络的背景

问题: 希望从训练样本分布中采样新数据,但这个分布不仅维度高而且还很复杂,难以直接实现。因此想到一个相对简单的方法:对一个简单的分布采样,比如均匀分布;然后,学习一种映射将其变换到训练样本分布。而这种映射的实现就是通过神经网络

2. 生成对抗网络GAN

GAN由判断别器(G)generator和生成器(D)discriminator组成;其训练目的是希望生成器G能够学习到样本的真实分布 P d a t a ( x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值