🤗关注公众号 funNLPer 白嫖畅读全文🤗 文章目录 1. 生成对抗网络的背景 2. 生成对抗网络GAN 3. GAN 数学理论 3.1 目标 3.2 生成器部分 3.3 判别器部分 4. GAN 的优缺点 5. 相关链接 1. 生成对抗网络的背景 问题: 希望从训练样本分布中采样新数据,但这个分布不仅维度高而且还很复杂,难以直接实现。因此想到一个相对简单的方法:对一个简单的分布采样,比如均匀分布;然后,学习一种映射将其变换到训练样本分布。而这种映射的实现就是通过神经网络 2. 生成对抗网络GAN GAN由判断别器(G)generator和生成器(D)discriminator组成;其训练目的是希望生成器G能够学习到样本的真实分布 P d a t a ( x