基于apollo MPC、apollo LQR、PP(纯跟踪)算法的车辆路径跟踪控制对比仿真【附说明文档】 附带一

基于Apollo MPC、Apollo LQR、PP算法的车辆路径跟踪控制对比仿真

一、说明文档

本文档旨在详细分析、仿真并对比基于Apollo MPC、Apollo LQR以及PP算法的车辆路径跟踪控制。我们将从汽车动力学模型、方向盘控制模型、横纵控制状态变量、预测状态模型分析以及算法效果分析等方面进行详细阐述。

二、理论分析

  1. 汽车动力学模型

汽车动力学模型是路径跟踪控制的基础。考虑到车辆的运动学特性,我们将采用二自由度模型,即纵向速度和横向位置作为控制目标。

  1. 方向盘控制模型

方向盘控制模型基于转向角度和车速,通过计算得出合适的转向角度,以实现车辆的路径跟踪。

  1. 横纵控制状态变量

横纵控制状态变量包括车辆的横向位置、纵向速度以及方向盘角度等,这些变量将用于评估和控制车辆的路径跟踪效果。

三、仿真搭建

  1. 仿真环境设定

模拟的赛道由直道和弯道组成,无障碍物。车辆从距离赛道原点横向两米的位置为起点开始仿真。

  1. 算法实现

分别实现Apollo MPC、Apollo LQR和PP算法,并集成到仿真环境中。

四、仿真分析

  1. 预测状态模型分析

对于MPC和LQR算法,我们需要构建预测模型以预测车辆未来的状态。这些模型将基于汽车动力学模型和方向盘控制模型进行构建。对于PP算法,其预测是基于几何关系的纯跟踪算法。

  1. 算法效果分析

在仿真过程中,我们将分别记录三种算法的路径跟踪效果,包括跟踪误差、跟踪速度等指标。通过对这些指标的分析,我们可以评估每种算法的优劣。

五、三种算法对比

  1. Apollo MPC横纵向模型预测控制

MPC通过构建一个优化问题,来找到最优的控制输入以最小化跟踪误差。其优点在于能够考虑未来的状态和约束,从而实现更平滑的路径跟踪。

  1. Apollo LQR横向路径跟踪控制

LQR通过线性化模型并设计一个线性反馈控制器来实现路径跟踪。其优点在于计算简单,但可能对非线性的适应性较差。

  1. PP算法路径跟踪控制

PP算法基于纯跟踪几何关系进行路径跟踪。其优点在于简单易实现,但在复杂环境下可能存在跟踪误差较大的问题。

六、模拟结果与讨论

我们将对比三种算法的模拟结果,分析其各自的优缺点,并讨论在实际情况中如何选择合适的算法。同时,我们将提供程序附带中文注释,以便于学习理解。如有需要,我们还可以提供付费讲解指导服务。

七、总结与展望

本文对基于Apollo MPC、Apollo LQR和PP算法的车辆路径跟踪控制进行了详细的对比分析。未来,我们还将继续研究更先进的算法,以提高车辆的路径跟踪性能和安全性。
基于apollo MPC、apollo LQR、PP(纯跟踪)算法的车辆路径跟踪控制对比仿真【附说明文档】
附带一份详细理论分析、仿真搭建、仿真分析说明文档
内容:汽车动力学模型、方向盘控制模型、横纵控制状态变量、预测状态模型分析、算法效果分析
三种算法对比:
①MPC横纵向模型预测控制
②LQR横向路径跟踪控制
③PP算法路径跟踪控制
算法的对比:PP, Apollo LQR, Apollo MPC。
模拟的环境是一个没有障碍物的赛道,赛道由直道和弯道组合而成。
车辆会先从距离赛道原点横向两米的位置为起点,向预定道路靠拢。
模拟的目标是为了让汽车成功尽可能的平滑
和正确的跟随给定轨迹到达终点。
程序附带中文注释便于学习可以提供付费讲解指导服务。

### LQR路径跟踪控制器原理 LQR(线性二次型调节器)是种优化控制方法,广泛应用于机器人和自动驾驶车辆等领域。其核心在于通过求解Riccati方程获得最优的控制律,从而实现对目标路径的有效跟踪[^1]。 #### 建立误差模型 为了设计有效的LQR控制器,首先要建立描述系统行为的状态空间模型。对于路径跟踪问题而言,通常会定义组状态变量来表示当前位置相对于期望轨迹的位置偏差以及姿态角偏差等信息。假设存在如下形式的状态向量: \[ \mathbf{x}(t)=\left[\begin{array}{c} e_{y} \\ e_{\theta} \\ v_e\\ r_e \end{array}\right], \] 其中 \( e_y, e_\theta\) 分别代表横向位置误差与航向角度误差;\( v_e,r_e \) 则分别对应速度误差及转向率误差。接着基于物理规律构建动态方程式,并对其进行适当简化处理以满足线性的前提条件[^2]。 ```matlab % MATLAB code snippet to define state-space model matrices A and B A = [0 1 0 0; 0 0 -k_v/k_theta 0; 0 0 0 1; 0 0 k_r*k_v/L 0]; B = [0; k_v/L; 0; -b/L]; ``` #### 控制输入的设计 旦获得了精确的状态转移矩阵 \( \mathbf{A},\mathbf{B} \),就可以利用这些参数计算反馈增益矩阵 \( K=[k_1,k_2,\cdots ,k_n]\),进而形成闭环控制系统结构。具体来说,可以通过解决代数黎卡提方程 (ARE): \[ P=\mathbf{A}'P+PA-PBR^{-1}B'P+Q, \] 并选取合适的权重矩阵 Q 和 R 来平衡性能指标之间的关系,最终得出所需的控制指令 u=-Kx(t)。 ```python import numpy as np from scipy.linalg import solve_continuous_are # Define weighting matrices Q and R based on design requirements Q = np.diag([q_pos, q_angle]) R = r_input * np.eye(1) # Solve Algebraic Riccati Equation using SciPy library function P = solve_continuous_are(A,B,Q,R) # Calculate feedback gain matrix K from solution of ARE K = np.dot(np.dot(R_inv,np.transpose(B)),P) ``` ### 应用实例分析 当把上述理论框架应用到实际场景当中时,比如无人车自主导航任务里,LQR能够帮助设备克服外界干扰因素的影响,保持平稳而高效的运动态势。特别是在面对复杂多变的道路环境条件下,该技术展现出良好的适应性和鲁棒特性,确保了整个过程的安全可靠。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值