20230508 DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Network

摘要

基于RCNN提出了一种端到端的单目VO框架,在KITTI VO数据集上进行的大量实验表明,与最先进的方法相比,其性能具有竞争力,验证了端到端深度学习技术可以成为传统VO系统的可行补充。

引言

近年来VO已经有成熟的框架了,但是它们通常是经过大量工程努力硬编码的,管道中的每个模块都需要仔细设计和微调,以确保性能。此外,单眼VO必须通过使用一些额外的信息(例如,相机的高度)或先验知识来估计绝对尺度,这使得单眼VO容易产生大的漂移,并且比立体VO更具挑战性。

深度学习最近在很多任务上取得了不错的性能,但是VO上应用还不是很多。本篇工作我们就提出了基于深度学习的VO算法。该算法是端到端的,不需要传统的VO流程,本文创新点有三个:

  1. To the best of our knowledge, this is the first end-to-end approach on the monocular VO through Deep Neural Networks (DNNs).
  2. 提出了一个基于RNN的端到端VO算法。
  3. 该算法可以隐式学习视频序列和复杂的相机姿态变化。

相关工作

基于RNN的端到端的VO算法

A. RNN 结构

在其他任务上,已经出现了好多优秀的网络,但是在几何任务上,VO不能简单地使用外观去进行推理。所以以前的网络不能简单地应用在VO任务上。一个可以学习几何特征表示的框架对于解决VO和其他几何问题至关重要。并且还要能处理序列数据,考虑到这两点RNN是一个很好地选择。

B. 基于CNN的特征提取

首先将两张连续图像链接,然后使用CNN进行特征提取。CNN结构如下图所示:
在这里插入图片描述

C.基于RNN的序列建模

D. 代价函数和优化过程

作者把问题建模为条件概率问题:
在这里插入图片描述
目标函数:
在这里插入图片描述
φ \varphi φ 代表欧拉角,四元数不太好优化,作者并没有说明原因。

实验结果

作者提到使用了LIBVISO2去 恢复单目VO的绝对尺度。

A. 训练和测试

数据集

KITTI有22个序列,序列00-10有真实标注,另外11个序列只提供了原始的数据。

训练和测试

00,02,08,09相对较长的序列用来训练,03,04,05,06,07,10,用来测试。
本文还设计了实验来检验该方法的泛化性:使用00-10进行训练,其余没有真实标注的用来测试。

过拟合是如何影响VO的

本文研究了一些VO使用深度学习的过拟合问题。

B.VO结果

作者使用RMSE来衡量平移和旋转的误差,
在这里插入图片描述
展示了三种算法,随着距离和速度的增加,平移和旋转角度的误差。
在3,4,5,6,7,10 六个序列上的误差:
在这里插入图片描述

### 回答1: Faster R-CNN是一种基于区域建议网络(Region Proposal Networks,RPN)的物体检测算法,旨在实现实时物体检测。它通过预测每个区域是否含有物体来生成候选框,并使用卷积神经网络(CNN)来确定候选框中的物体类别。Faster R-CNN在提高检测精度的同时,也显著提高了检测速度。 ### 回答2: 在计算机视觉领域中,目标检测一直是热门研究的方向之一。近年来,基于深度学习的目标检测方法已经取得了显著的进展,并且在许多实际应用中得到了广泛的应用。其中,Faster R-CNN 是一种基于区域建议网络(Region Proposal Networks,RPN)的目标检测方法,在检测准确率和速度之间取得了很好的平衡,能够实现实时目标检测。 Faster R-CNN 的基本框架由两个模块组成:区域建议网络(RPN)和检测模块。RPN 主要负责生成候选目标框,而检测模块则利用这些候选框完成目标检测任务。具体来说,RPN 首先在原始图像上以多个尺度的滑动窗口为基础,使用卷积网络获取特征图。然后,在特征图上应用一个小型网络来预测每个位置是否存在目标,以及每个位置的目标边界框的坐标偏移量。最终,RPN 根据预测得分和位置偏移量来选择一部分具有潜在对象的区域,然后将这些区域作为候选框送入检测模块。 检测模块的主要任务是使用候选框来检测图像中的目标类别和位置。具体来说,该模块首先通过将每个候选框映射回原始图像并使用 RoI Pooling 算法来获取固定大小的特征向量。然后,使用全连接神经网络对这些特征向量进行分类和回归,以获得每个框的目标类别和精确位置。 相比于传统的目标检测方法,Faster R-CNN 具有以下优点:首先,通过使用 RPN 可以自动生成候选框,避免了手动设计和选择的过程;其次,通过共享卷积网络可以大大减少计算量,提高效率;最后,Faster R-CNN 在准确率和速度之间取得了很好的平衡,可以实现实时目标检测。 总之,Faster R-CNN 是一种高效、准确的目标检测方法,是深度学习在计算机视觉领域中的重要应用之一。在未来,随着计算机视觉技术的进一步发展,Faster R-CNN 这类基于深度学习的目标检测方法将会得到更广泛的应用。 ### 回答3: Faster R-CNN是一种结合了深度学习和传统目标检测算法的新型目标检测方法,旨在提高目标检测速度和准确率。Faster R-CNN采用了Region Proposal Network(RPN)来生成候选区域,并通过R-CNN网络对候选区域进行分类和定位。 RPN是一种全卷积神经网络,用于在图像中生成潜在的候选区域。RPN通常在卷积特征图上滑动,对每个位置预测k个候选区域和其对应的置信度得分。这样,对于输入图像,在不同大小和宽高比的Anchor上预测候选框,可以在计算上更有效率。 R-CNN网络利用卷积特征图作为输入,对RPN生成的候选区域进行分类和精确定位。与以前的目标检测方法相比,Faster R-CNN使用了共享卷积特征,使得整个检测网络可以端到端地进行训练和优化,缩短了训练时间,同时也更便于理解和改进。 Faster R-CNN不仅具有较高的准确性,还具有较快的检测速度。在各种基准测试中,Faster R-CNN与其他目标检测算法相比,都取得了优异的性能表现。总之,Faster R-CNN将目标检测引入了一个新的阶段,为实时目标检测提供了一个良好的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值