《An Unsupervised Learning Model for Deformable Medical Image Registration》

Abstract

    我们提出了一种基于快速学习的算法,用于可变形的成对3D医学图像配准。当前的配准方法针对每对图像独立地优化目标函数,这对于大数据而言可能是耗时的。我们将配准定义为参数函数,并根据感兴趣的集合给出一组图像来优化其参数。给定一对新的扫描图像,通过直接使用已经学习好了的参数的函数直接评估,我们能够快速计算配准区域。我们使用CNN对此函数进行建模,并使用空间变换图层从另一个图像重建一个图像,同时对配准区域施加平滑约束。所提出的方法不需要监督信息,例如Ground Truth或标记信息。我们证明了与最先进的3D图像配准相当的配准精度,同时在实践中操作速度更快。我们的方法有望显著加速医学图像分析和处理管道,同时促进基于学习的配准方法及其应用的新方向。

一 Introduction

    变形图像配准是各种医学成像研究中的基本任务,并且几十年来一直是积极研究的主题。在可变形配准中,在一对N维度图像体积之间建立密集的非线性对应关系,例如3D MR脑部扫描,描绘类似的结构。大多数配准方法解决了每个体积对的优化问题,使体素具有相似的外观,同时对配准映射实施强制平滑。解决这种优化是计算密集型的,因此在实践中非常慢。

    相比之下,我们提出了一种新的配准方法,该方法从体积集合中学习参数化的配准函数。我们使用卷积神经网络(CNN)实现该功能,该网络采用两个n-D输入体积并输出一个体积的所有体素到另一个体积的映射。使用来自感兴趣的数据集的训练集的体积对来优化网络的参数,即卷积核权重。通过为卷集合共享相同的参数,该过程学习一个公共表示,该表示可以对齐来自同一分布的任何新的卷对。从本质上讲,我们取代了传统配准返回给发的昂贵优化每个测试图像对的算法,在训练阶段具有一个全局函数优化。通过简单地评估给定体积上的学习函数来实现新测试扫描对之间的配准,从而实现快速配准。(主要是讲用CNN来代替传统方法的优化过程)

    创新点如下:

  • 提出一个基于学习的配准方法,无监督。
  • 提出带参数的CNN框架,配准能够在一次测试过程中完成。
  • 我们的方法支持各种成本函数的参数优化,可以适应各种任务。

    在本文中,我们使用3D MR脑部扫描图像进行配准,然而,我们的方法广泛适用于医学成像领域内外的配准任务。我们在包含来自各种年龄组的健康和患病大脑图像的7,000多次扫描的多研究数据集上评估我们的方法。过去需要花费两个小时才能配准的扫描现在可以使用CPU在一到两分钟内完成配准,并在一秒钟内使用GPU配准。 这对于许多医学图像分析任务具有重要的实际意义。(强调速度快且可以应用在别的领域)

二 Background

    在典型的体积配准公式中,一个(移动或源)体积翘曲以与第二(固定或目标)体积对齐。可变形配准策略将用于全局对准的初始仿射变换与具有较高自由度的通常较慢的可变形变换分开。我们专注于后一步骤,其中我们计算所有体素的密集非线性对应关系。图1显示了取自3D MRI体积的样品2D冠状切片,其中概述了若干解剖结构的边界。由于健康状态的健康状态和自然解剖变异的差异,导致受试者之间存在显着的变异性。可变形配准可以比较扫描和种群分析中的结构。 这些分析对于了解人群中的变异性或患有疾病的个体的大脑解剖学随时间的演变是有用的。大多数现有的配准算法基于能量函数迭代地优化变换。 设F,M分别表示固定和运动图像,并且令$\phi$为配准场。 优化问题通常写为:

    M\left(\phi \right )是M在区域$\phi$ 扭曲后的图像。sim函数度量图像相似度。smooth对$\phi$施加平滑操作。$\phi$通常用用DVF表示,指定向量的偏移F to M。Diffeomorphic变换是一种流行的替代方案,它将$\phi$模型化为速度矢量场的积分。因此,他们能够保持拓扑并在$\phi$上强制实现可逆性。ssim通常用均方体素差,互信息和互相关。当体积具有不同的强度分布和对比时,后两者特别有用。smooths强制进行空间平滑变形,通常在$\phi$的空间梯度上建模为线性算子。在我们的工作中,我们优化函数参数以最小化(1)形式的预期能量使用体积对的数据集,而不是独立地对每对进行。

四. Method

    在作者的方法中,三维图像,且是单通道灰度医学图像。假定F和M已经经过仿射变换。因此,体积之间唯一的不对齐来源是非线性的。 许多工具包都可用于快速仿射对齐。

    $g_\theta\left(F,M \right )=\phi使用卷积神经网络,\phi为配准区域。\theta为学习到的参数。

    

    M和F作为输入,根据CNN网络中的参数计算\phi.对于M\left(p \right )扭曲到M\left(\phi\left(p \right )\right )使用空间变换。使得模型能够评估M\left(\phi \right )和F之间的相似性以及更新\theta.

    我们使用随机梯度下降优化预期损失函数。D是数据的分布,M和F在测试时间,我们得到一个配准区域通过演化G函数。

4.1. VoxelMorph CNN Architecture

网络结构采用U-Net作为基本结构,利用M和F产生\phi

图3有两个变种,主要是为了平衡准确率和计算时间。将F和M合并成两个通道的3-d图像。其中卷积是3维卷积以及Relu激活函数。在decoder和encoder阶段都是这样。卷积核的大小是3*3*3。在编码器中,我们使用跨步旋转将空间尺寸减半(指出是U-Net),直到达到最小层。 编码器的连续层对输入的较粗略表示进行操作,类似于传统图像配准工作中使用的图像金字塔。在编码器的最小的层是原始输入大小的\left(1/16 \right )^3.在解码器中,我们将大小恢复到原始输入大小,输出尺寸大小为:160*192*224*3.跳过连接将在编码阶段期间学习的特征直接传播到生成配准的层。

    解码器的连续层在更精细的空间尺度上操作,从而实现精确的解剖学对准。 然而,这些卷积应用于最大的图像体积,这在计算上是昂贵的。 我们使用两种架构来探索这种权衡。

4.2. Spatial Transformation Function

    文中讲到优化一个目标函数(F和M\left(\phi \right ))之间的相似度),为了使用梯度下降法。我们构建了一个基于空间变换器网络的可微分运算来计算M\left(\phi \right ).

    对于每个体积p,我们计算M中p的位置\phi\left(p \right )。因为图像值仅在整数位置定义,所以我们在八个相邻体素处线性插值。公式如下:

4.3. Loss Function

所提出的方法适用于任何可区分的损失。 在本节中,我们制定了一个普遍的损失函数。

sim使用负局部互相关损失来度量。一种流行的指标,对扫描和数据集中经常出现的强度变化具有鲁棒性。

\hat{F}\left(p \right )代表图像减去局部平均强度,\hat{M}\left(\phi\left(p \right ))同理。在n^3 范围计算平均强度。n=9.p_i迭代的表示n^3中每个位置的(p).

CC的值越高代表相似性越大。配准度也越高。

只要优化这个损失函数,使其达到极小值。则表示CC值越大,配准度越高。

正则化公式如下:

我们使用相邻体素之间的差异来近似空间梯度。 因此,完全损失是:

5. Experiments

5.1. Dataset

我们在脑MRI配准任务上展示了我们的方法。 我们使用来自8个公开数据集的7829 T1加权脑MRI扫描的大规模,多站点,多研究数据集:ADNI [33],OASIS [29],ABIDE [31],ADHD200 [32],MCIC [19] ],PPMI [30],HABS [12]和哈佛GSP [20]。

所有的数据集来自不同的年龄和不同的健康状态。所有扫描都重新采样为256×256×256网格,具有1mm各向同性体素。我们使用FreeSurfer执行标准预处理步骤,包括每次扫描的仿射空间归一化和脑提取。

5.2. Dice Score

我们使用解剖学分割的体积重叠来评估我们的方法。我们包括所有测试对象体积至少为100体素的任何解剖结构,产生29个结构。骰子得分为1表示结构相同,得分为0表示没有重叠。

我们包括所有测试对象体积至少为100体素的任何解剖结构,产生29个结构。

5.3. Baseline Methods

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值