视觉SLAM十四讲-第七讲笔记

本文主要讲解了视觉SLAM中基于特征点法的前端,涉及ORB特征点提取、特征匹配、对极几何、三角测量、PnP和ICP等关键步骤。通过对极几何求解相机位姿,三角测量获取深度信息,从而实现单目SLAM的初始化。PnP和ICP则用于求解相机位姿和点云间的变换。
摘要由CSDN通过智能技术生成

主要内容

本章开始进入视觉里程计(VO)部分,VO按是否需要提取特征,分为特征点法的前端和不提特征的前端。这一章讲的是基于特征点法的前端,分为以下内容。

  1. 特征点法:找到两张2D图像上的匹配点。
  2. 对极几何:根据2D-2D特征点对求解R,t。
  3. 三角测量:根据2D-2D特征点求深度。
  4. PnP:根据3D点云和匹配的2D图像求R,t。
  5. ICP:求两个点云之间的R,t。

关系是:

  1. 特征点法找到2D图像的匹配点对,用于对极几何和pnp
  2. 对极几何求出2D-2D的位姿。
  3. 根据对极几何求出的位姿,三角测量求出2D-2D的深度。
  4. 根据三角测量求出的深度,可以初始化单目SLAM,得到三维点信息;或用RGBD相机获得三维信息。知道3D信息,对于下一张2D图像,可根据特征点法找到的匹配点对,使用PNP,求出位姿信息和深度信息。
  5. 根据pnp求出的深度信息;或直接用RGBD得到的两个点云,可以用ICP,求出两个点云之间的位姿变换。

在这里插入图片描述
图片引自leeyau的博客

一、特征点法

这部分内容,讲述了提取2D图像的特征点,并对不同图像之间的特征点进行匹配,得到匹配的特征点对。这些匹配点是后面用来估计相机位姿的基础。

特征点:在SLAM中被成为路标。分为关键点和描述子。
对于SLAM来说,SIFT太慢,FAST没有方向信息,使用改进FAST的ORB特征。

ORB特征

关键点:Oriented FAST

是改进的,具有方向性的FAST描述子。
FAST用于检测局部像素灰度明显变化的位置,思想是看邻域内有没有连续N个和它差T灰度的点。加上NMS和其他遍历的加速trick。
ORB的改进:

  • 根据FAST关键点的Harris响应值,选取前N大的,以固定特征点数目。
  • 构建图像金字塔,解决尺度问题。
  • 使用灰度质心法,解决旋转问题。(加一个几何中心到质心的向量)
描述子:BRIEF

是一种二进制描述子,描述了关键点附近两个像素的大小关系。

特征匹配

局部特征会导致误匹配,难以解决。
BRIEF描述子使用汉明距离进行相似性度量,快速近似最近邻(FLANN)适合数目多的特征点匹配。

二、对极几何

在这里插入图片描述

  • 已知:匹配点对 p 1 p_1 p1 p 2 p_2 p2的像素坐标。
  • 给定:两张二维图像,二维图像上特征点的匹配关系。
  • 未知:P的三维空间坐标, I 1 I_1 I1 I 2 I_2 I2的变换矩阵( T 1 , 2 T_{1,2} T1,2,即 R , t R,t R,t)。

一般是用于__单目SLAM的初始化__,用对极几何可求出位姿,在用三角测量估计三维空间点的位置后,就能用其他更准确的方法继续求解了。

1. 对极约束

设P在图1的相机坐标系下,坐标为:
P = [ X , Y , Z ] T P=[X,Y,Z]^T P=[X,Y,Z]T
p 1 p_1 p1 p 2 p_2 p2的像素坐标(单位像素):
s 1 p 1 = K P , s 2 p 2 = K ( R P + t ) s_1p_1=KP, s_2p_2=K(RP+t) s1p1=KP,s2p2=K(RP+t)

其归一化平面坐标(单位米):
x 1 = K − 1 p 1 , x 2 = K − 1 p 2 x_1=K^{-1}p_1,x_2=K^{-1}p_2 x1=K1p1,x2=K1p2

得到:
x 2 = R x 1 + t x_2=Rx_1+t x2=Rx1+t
这里的 x x x是齐次坐标,等式表达了一个齐次关系。

两边同时左乘 t ‘ {t‘} t,这个东西相当于与它做外积,得到的结果和它、 x 2 x_2 x2都垂直。因此再左乘一个 x 2 T x_2^T x2T,就得到了0。
最终得到:
x 2 T t ’ R x 1 = 0 x_2^Tt’Rx_1=0 x2TtRx1=0

中间部分写成 E E E矩阵,称为本质矩阵:
x 2 T E x 1 = 0 x_2^TEx_1=0 x2TEx1=0
带入 p 1 p_1 p

### 回答1: 《视觉SLAM十四》第三章主要介绍了视觉SLAM中的关键技术——特征提取和描述子。本章首先介绍了特征点的概念和特征点的选择原则。特征点即图像中具有鲁棒性和区分度的点,可以通过对其进行检测和描述来进行特征匹配和跟踪。在进行特征提取时,作者介绍了常见的特征检测算法,如Harris角点检测、SIFT和SURF算法等,并对其进行了比较和分析。 接着,本章详细阐述了特征描述子的概念和作用。特征描述子是对特征点周围区域的图像信息进行编码,以实现特征匹配和跟踪。常见的特征描述子包括SIFT、SURF和ORB等。作者从描述子的表示形式、计算方式和匹配方法等方面进行了介绍,并对它们进行了比较和评价。同时,还提到了基于二进制描述子的方法,如BRIEF、BRISK和FREAK等。 在特征匹配方面,本章介绍了特征描述子匹配的基本原理和流程。以基于特征点的视觉SLAM为例,作者详细解释了特征点的匹配过程,包括特征点的选择、特征点描述子匹配和筛选等步骤。并介绍了如何通过验证特征点的三角化和PnP求解来估计相机的位姿。 此外,本章还介绍了一些特定场景下的特征点选择和提取策略,如动态环境下的特征点追踪和关键帧选择等。 综上所述,《视觉SLAM十四》第三章主要介绍了特征提取和描述子在视觉SLAM中的重要性和应用。通过对特征点的检测和描述,可以实现特征匹配和跟踪,为后续的相机位姿估计和建图提供基础。该章内容详细且通俗易懂,对于学习和理解视觉SLAM有着重要的指导作用。 ### 回答2: 《视觉SLAM十四-Ch3》主要介绍了视觉SLAM(同时定位与建图)技术的基本原理和实现方法。本章主要涵盖了三维几何表示和变换、相机模型和相机姿态以及特征提取与匹配等内容。 首先,本章介绍了三维几何表示和变换的概念。通过介绍欧氏空间中的点、向量和坐标变换,深入解释了相机在三维空间中的位置和朝向的表示方式。同时,引入了齐次坐标和投影矩阵的概念,为后续的相机模型和姿态估计打下了基础。 其次,本章详细解了相机模型和相机姿态的原理与应用。其中,介绍了针孔相机模型,分析了图像坐标和相机坐标之间的映射关系。通过投影矩阵的推导,给出了透视投影和仿射投影的公式,并解释了相机焦距和主点的含义。此外,还介绍了如何通过计算相机的外参矩阵来估计相机的姿态,以及如何将图像坐标转换为相机坐标。 最后,本章介绍了特征提取与匹配的技术。首先,介绍了角点和边缘点的概念,以及如何利用差分和梯度计算来检测图像中的角点和边缘点。然后,介绍了如何通过特征描述符来表示图像中的特征点,并通过特征匹配算法找到两幅图像之间的对应关系。特征提取与匹配是视觉SLAM中非常重要的步骤,对于后续的相机定位和建图至关重要。 综上所述,《视觉SLAM十四-Ch3》通过系统地介绍了视觉SLAM技术的基本概念和实现方法,包括三维几何表示和变换、相机模型和相机姿态的原理与应用,以及特征提取与匹配的技术。这些内容为读者深入理解和掌握SLAM技术提供了很好的基础。 ### 回答3: 视觉SLAM(Simultaneous Localization and Mapping)是一种通过计算机视觉技术,实现机器智能的同时实时定位和地图构建的方法。在《视觉SLAM十四》第三中,主要介绍了视觉SLAM的基本概念和关键技术。 首先,解了视觉SLAM的理论基础,包括自我运动估计和地图构建两个部分。自我运动估计是通过相邻帧之间的视觉信息,计算相机在三维空间中的运动,从而实现机器的实时定位;地图构建是通过对场景中特征点的观测和跟踪,建立起一个三维空间中的地图。这两个过程相互影响,通过不断迭代优化,实现高精度的定位和地图构建。 接着,解了基于特征的视觉SLAM算法。特征提取与描述是建立视觉SLAM系统的关键步骤,通过提取场景中的特征点,并为其生成描述子,来实现特征点的匹配和跟踪。同时,还介绍了一些常用的特征点提取和匹配算法,如FAST、SIFT等。 在SLAM框架方面,本节还介绍了基于视觉的前端和后端优化。前端主要负责实时的特征跟踪和估计相机运动,后端则是通过优化技术,对前端输出的轨迹和地图进行优化求解,从而提高系统的精度和鲁棒性。 最后,本节提到了几个视觉SLAM的应用场景,如自主导航、增强现实等。这些应用对于实时高精度的定位和地图建立都有着很高的要求,因此,视觉SLAM的技术在这些领域有着广泛的应用前景。 总的来说,《视觉SLAM十四》第三视觉SLAM的基本概念和关键技术进行了系统的介绍。理论基础、特征提取与描述、SLAM框架和应用场景等方面的内容都给出了详细的解释和案例,有助于读者更好地理解和应用视觉SLAM技术。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值